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Übersicht

Der zirkadiane Rhythmus hat einen großen Einfluss auf die Funktionen des menschlichen Körpers
und richtet sich hauptsächlich nach der täglichen Erdrotation und der damit verbundenen Licht-
intensität. Hormone, vor allem Glucocorticoide wie Cortisol, helfen, diesen Rhythmus an den
ganzen Organismus weiterzugeben. Allerdings ist der zirkadiane Rhythmus sehr anfällig für Stress,
vorwiegend chronischen und Lebenszeitstress. Beide werden durch verschiedene Umstände des
täglichen Lebens hervorgerufen, wie beispielsweise Stress am Arbeitsplatz, Armut oder das
Pflegen einer älteren oder kranken Person, aber auch durch prägende Ereignisse wie dem Verlust
einer nahestehenden Person.
Aufgrund der Entwicklung verschiedener Pathologien, die mit der Unterbrechung des täglichen
Rhythmus einhergehen, ist es wichtig, Veränderungen im täglichen Cortisolverlauf zu erkennen.
Um auch zukünftigen Erkrankungen vorzubeugen, ist es notwendig, die Verbindung zwischen
dem biologischen Rhythmus und psychologischen Variablen, die Aufschluss über Stressbelastung
geben können, zu verstehen.
Da dies ein komplexes Phänomen mit einer vielschichtigen Menge an Daten darstellt wurden in
dieser Arbeit Methoden des maschinellen Lernens genutzt, um verschiedene Cortisolrhythmen zu
identifizieren und mit den psychologischen Variablen aus einem Fragebogen zu verknüpfen.
Mit der Hilfe von Clustering-Algorithmen war es möglich, aus einem Datensatz mit 107 Teil-
nehmern 3 verschiedene typische Cortisolprofile zu identifizieren – eine ‘normale’ Kurve, eine
Kurve mit ‘abgeflachter Aufwachreaktion’ und ‘keine Aufwachreaktion’. Die Studie beinhaltete
die Abgabe von Speichelproben verteilt über den Tag, um den Cortisolspiegel zu ermitteln, sowie
die Beurteilung von psychologischen Variablen durch das Ausfüllen eines Fragebogens. Obwohl
keine statistische Signifikanz beim Vergleich der psychologischen Variablen der gefundenen
Gruppen festgestellt werden konnte, gab es dennoch Verbindungen zwischen den Verteilungen der
Variablen und den zugehörigen Kurven. Besonders akute körperliche und psychische Krankheit
beeinflussten die Variablenverteilung innerhalb der Gruppen stark, wobei jedoch im Verlauf
des Tagesprofils kein Unterschied zu gesunden Probanden zu sehen war. Daher ist die Unter-
suchung des Zusammenhangs zwischen verschiedenen Erkrankungen und Stress ein möglicher
Ansatzpunkt für weitere Forschung.
Eine Vorhersage des Cortisolverlaufes konnte allerdings nicht zuverlässig getroffen werden. Der
Klassifizierungsansatz war vor allem durch fehlende Annotationen limitiert und ist daher ebenfalls
ein weiterer Aspekt für zukünftige Arbeiten. Damit könnte eine Voraussage des Cortisolrhythmus
tatsächlich ohne aufwändige Speichelproben möglich sein.
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Abstract

One of the strongest regulators within our body is the circadian timing system that is mainly
controlled by the daily rotation of the earth and the resulting light pattern. Hormones, especially
glucocorticoids like cortisol, help to synchronise this pattern throughout the whole body. However,
this diurnal rhythm of cortisol is very sensitive to stress, especially life and chronic stress. Both
are caused by a combination of different circumstances of daily life, like work stress, poverty
or conditions like looking after an elderly or sick person as well as striking life events, such as
interpersonal loss or humiliation.
Due to the development of different pathologies that accompany the disruption of this circadian
pattern, it is important to detect alterations in the cycle of cortisol. To prevent future disease, it is
necessary to understand the linkages of the biological cycle with the psychological variables that
reveal information about stress exposure.
As this interaction is a complex phenomenon with multiple layers of data, Machine Learning

methods were applied in this work to identify different cortisol rhythms and link them to survey-
assessed variables.
With the help of clustering algorithms it was possible to determine 3 different types of diurnal
rhythms from a dataset with 107 subjects – ‘normal’ cycle, ‘flattened Cortisol Awakening Response
(CAR)’ and ‘no CAR’. The study included the collection of saliva samples throughout the day
to observe the level of cortisol and the assessment of psychological variables with the help of
a questionnaire. Although there was no statistical significance in the psychological variables
between the groups that were found, linkages between the distribution of these variables and
the corresponding curves could be identified. Especially the influence of acute physical and
mental disease had a large impact on the distribution of variables within the groups whereas no
alteration could be seen in the cycle of cortisol compared to disease-free subjects. Therefore, the
investigation of the influence of disease on the conception of stress is a topic for further research.
A prediction of the type of cortisol cycle could not be made yet as missing labels in the data
lead to a bad performance of the classification algorithms. In future work, this approach could
be continued and optimized until a prediction of the cortisol rhythm, based on psychological
variables without the assessment of saliva, is possible.
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Chapter 1

Introduction

Stress affects the whole body – that is evident regarding the cascade of stress mediators that
begins in our brain, goes down to our kidneys and then reaches nearly every cell [Fri09]. This
response is triggered in situations of inescapable threat and helps the individual to survive. The
most important hormone responsible for initiating a stress response is cortisol. Cortisol is a
glucocorticoid produced by the adrenal cortex and is one of few hormones that are necessary
for survival [Smy97]. It is a biomarker that is frequently used in psychobiological research as
it responds to both acute stressors and chronic stress. Additionally, it is easy to assess, as it is
possible and reliable to measure in saliva and does thus not require cumbersome and invasive
blood serum analysis [Ada17].
While stress systems are vital for the individual in order to survive, they also have the potential to
damage the organism [Roh19]. The exposure to chronic stress is most likely to result in permanent
changes in biological, physiological and emotional responses and to increase the risk for diseases
like cardiovascular diseases or even cancer [Coh07].
A circadian rhythm, as it is also found within other functions of the human body, such as heart
rate, blood pressure, body temperature or blood glucose level [Sch14] plays a vital role in cortisol
regulation. The cortisol level follows the circadian rhythm, i.e. changes over the course of one
day which is called Diurnal Cortisol Rhythm. An alteration of this rhythm has been proposed
to be a mediator between chronic stress and poor mental and physical health outcomes in past
research [Ada17]. However, varying psychological factors and types of stress lead to other out-
comes in the cortisol profile than what is proposed to be normal [Ada17]. Therefore it is important
to identify the linkages between the diurnal rhythm of cortisol and its implications on mental
and physical health. The knowledge gained from understanding these complex interactions can
be used to improve the circadian regulation and prevent the development of chronic stress and
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potential following psychopathology, e.g. by altering health behaviours, applying stress reduction
methods or foster better sleep [Ada17].
As the interaction of stress mediators and psychological determinants constitutes quite a complex
phenomenon, this problem has to be addressed with other methods than statistical analysis that
are able to test selected hypotheses or analyze trends and correlations, which has mainly been
done by psychologists so far [Ada17]. Therefore, new methods that can process many different
levels of data and cover hidden linkages have to be explored. A promising approach that is not
spread widely in psychology yet is the use of modern Machine Learning (ML) techniques which
have the potential to uncover more complex relationships. Especially the automatic distinction
of different classes (also referred to as classification) is one of the most common application
fields of ML. The utilisation of classification algorithms in order to classify a diurnal profile into
one of different, previously defined groups, but also the application of clustering algorithms to
find populations with similar rhythms (without the need of defining classes beforehand) could
be potential strategies. As the utilization of these methods in the field of stress research has by
far not been investigated sufficiently, there is huge potential to uncover hidden relationships by
further research.
For that reason, this work attempts to apply different machine learning methods to identify differ-
ent stress responder types in data from a study collected by the Chair of Health Psychology of the

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). The dataset consists of diurnal corti-
sol profiles, measured by acquiring salivary cortisol samples over the course of two consecutive
days, and survey-assessed demographic and psychological variables. Furthermore, it is examined
whether a prediction of the stress responder type based on the diurnal cortisol profile is possible.

The thesis is structured as followed: After an outline of the medical background in Chapter 2,
Chapter 3 sums up the current state of research in the field of health psychology, with an emphasis
on the application of machine learning methods to this topic. In Chapter 4 a detailed description
of the methods is provided, including a description of the dataset used in this thesis, and the
machine learning pipelines for both unsupervised and supervised methods (feature extraction,
preprocessing, clustering/classification and evaluation). After the presentation of the obtained
results in Chapter 5, the different approaches are compared and discussed in detail in Chapter 6.
The thesis is concluded by Chapter 7, which sums up the key findings and presents an outlook
with possible points of contact for future work.



Chapter 2

Medical Background

This chapter gives an overview of the medical background of the pathways that are responsible for
stress hormones and health outcomes. The stress reaction is initiated in the brain and affects the
whole body, whereby the two major components responsible for spreading the stress signalling
cascade throughout the body are the Hypothalamic-Pituitary-Adrenal Axis (HPA Axis) and the
Sympathetic Nervous System (SNS).
States of stress can be “experiences in daily life, including daily hassles as well as major life
events and abuse or trauma” [McE08] that can occur at different stages in life. Chronic stress
and life stress have a considerable impact on the course of the diurnal cycle which is part of a
complex circadian timing system [Sto01], whereas acute psychosocial stress causes a so-called
Fight-or-Flight Response in the body, together with a release of different hormones to help the
individual to cope effectively with environmental threats [Bre15].

2.1 Stress Signalling Pathways

In general, the release of cortisol is increased in states of heavy physical or mental strain and
case of pain or dropping blood pressure. The purpose of this elevated level of cortisol is the
provision of energy substrates by inhibiting the absorption of glucose in fat cells on the one hand
and increasing the production of glucose in the liver to raise the glucose concentration in the blood
plasma, on the other hand [Lan11].
The reaction to stress propagates through two different pathways and starts with the activation of
neurons in the hypothalamus. The SNS then triggers the Fight-or-Flight Response, which includes
increased tension of muscles, a defensive posture, the rise of blood pressure, sweating and an
increased heart rate. At the same time, Corticotropin Releasing Factor (CRF), a polypeptide that
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also follows a circadian rhythm, is released from the hypothalamus, the initiator of the stress
response. CRF triggers the distribution of Adrenocorticotrophic Hormone (ACTH), a peptide
hormone that regulates the release of corticoids, from the anterior pituitary glands which are
located at the base of the brain [Lan11]. This ultimately leads to the release of Cortisol from the
adrenal cortex. In turn, the increased level of cortisol inhibits the further production of CRF and
ACTH in order to regulate the concentration of plasma cortisol as presented in Figure 2.1.
On the downside, glucocorticoides like cortisol delay cell growth and wound healing [Lan11].
For that reason, increased cortisol levels over a longer time period, e.g. due to chronic stress or
a defect in cortisol regulation can negatively affect the human body. According to Cohen et al.
chronic stress, which is stress that lasts for more than 3 months, heightens the risk of depression,
cardiovascular diseases, diabetes, autoimmune diseases, upper respiratory infections, and poorer
wound healing [Coh12].

Figure 2.1: HPA Axis with the hormones involved, negative feedback of Cortisol suppressing the
release of CRH and ACTH [Hil]
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2.2 Diurnal Cortisol Rhythm

A fundamental property of living matter is the presence of a circadian rhythm, which can be
influenced by internal and external factors, e.g. light. In humans, this rhythm spans approximately
24 hours and is synchronized with the daily rotation of the earth. The main regulator is the diurnal
light pattern which is received by the human body through the eye and is then transmitted to
Suprachiasmatic Nuclei (SCN) neurons in the hypothalamus. These neurons act as the central
clock of the organism and are influenced by clock gene expression. In general, up to 10% of the
human genome is under circadian control [Sch14].
Hormones, especially glucocorticoids play a role in the rhythmic synchronization of multiple
peripheral clocks of the body. The HPA Axis receives input from the SCN which target the
hypothalamus and initiate a cascade of hormones (CRF, ACTH and cortisol). The HPA Axis also
cooperates with the SNS, that can modulate circadian rhythms locally. The whole process of
entrainment, which means the alignment of the organisms’ endogenous circadian rhythm to the
external rhythm is shown in Figure 2.2 [Sch14].
Besides the hormonal cycle, the SCN also regulate the diurnal rhythm of body temperature, blood

pressure and heart rate.
A disruption of this circadian rhythm is likely to happen when experiencing jetlag, sleep distur-
bances or doing shift-work [Ada17].

Figure 2.2: Entrainment and synchronization, SCN as the master clock of the organism, HPA
axis setting a common phase [Sch14]



6 CHAPTER 2. MEDICAL BACKGROUND

An example of a typical 24-hour cortisol rhythm can be seen in Figure 2.3. The concentration
of cortisol rises slowly during the night in response to suprarenal activation by ACTH, which is
controlled by SCN. The level increases by around 50-60% within 30 minutes after waking [Pru97]
which is called the Cortisol Awakening Response (CAR). It is supposed to start the mobilization of
energy for the metabolism and prepare the individual for the upcoming day and possible stressful
situations [Ste16]. It plays an important role in the course of the whole cycle as alterations of this
response to awakening can be related to changes in HPA Axis activity. An enhanced CAR is e.g.
found in people who report job stress and workoverload [Ste16].
After the peak level at 30 minutes after the time of waking, the concentration drops rapidly within
the first hours of wakefulness, decreases more slowly until bedtime and reaches its minimum
value in the first half of the night. [Ada17].

Figure 2.3: 24h Cortisol rhythm, minimum value at 00:18, maximum value (CAR) at
08:32 [Cha10]

As the central circadian biology is influenced by clock gene expression in the SCN, genetic
factors could affect HPA Axis functioning and the following diurnal cycle of cortisol. But there
is also evidence that dysregulation of this rhythm is caused by psychosocial stress. This stress-

related circadian dysregulation found in the altered cortisol cycle might give a hint on changes
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within other circadian regulated functions of the body [Ada17]. As there are different variations
in the cycle, e.g. normal, flat or inconsistent, between individuals due to genetic, developmental
and psychosocial factors [Ada17], the diurnal cortisol rhythm is studied intensely as presented in
the next chapter.





Chapter 3

Related Work

Since the CAR is stated to be a reliable indicator for changes in HPA Axis activity which can, for
example, be related to chronic stress and its level is hardly impacted by age, smoking or the use of
oral contraceptives, it has been investigated widely [Wüs00].
Adam et al. extended the research about altered CAR in stress-related diseases, especially Major

Depressive Disorder (MDD), simply known as depression. In their work, they state that the size of
the CAR is a significant potential risk factor for future MDD, especially a heightened CAR may play
a role [Ada10]. On the other hand, a decreased CAR is associated with self-focused rumination
and less improvement of bad mood after distraction which constitutes vulnerability for future
depression [Kue07]. Another stress-related disease is burnout which has been investigated by
several groups and lead to contradictory findings. DeVente et al. and Grossi et al. obtained results
about an enhanced CAR among participants with burnout compared to healthy controls [Gro05,
De 03], whereas Chida et al. reported in their meta-analysis that burnout is characterized by
a reduced CAR. They explain the contrary findings by sleep disturbances that can occur with
burnout, so that the cortisol level might arouse near consciousness and before the person defines to
be awake [Chi09]. Nevertheless, cortisol reactivity and basal levels were found out to be similar
for healthy subjects and patients with burnout [De 03].
Posttraumatic Stress Disorder (PTSD), which is a mental disorder and is characterized by the
re-experiencing of a traumatic event and emotional numbing was studied in connection with the
CAR by Wessa et al. [Wes06]. They compared cortisol values of 48 trauma-exposed subjects (29
with and 19 without PTSD) and 15 non-exposed controls. PTSD patients showed a significantly
lower cortisol increase after waking than the other groups, but baseline cortisol levels directly
after waking did not differ.
Further research has also been done in the field of work-related stress. Steptoe et al. found out
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that free cortisol levels in the morning were significantly higher in school teachers with high job
strain, defined as a combination of high job demand and low job control, compared to teachers
with low job strain [Ste00]. Similar findings were reported by Schulz et al. who compared cortisol
levels of subjects who were chronically stressed due to work overload and non-stressed ones.
They also stated a significantly larger increase in cortisol after waking for the chronically stressed
group [Sch98]. Furthermore, the effect of work overload plays a role in the difference in the
cortisol rhythm between workdays and weekends. There is a clear difference in the CAR between
workday and weekend, that is associated with workload and worry [Sch04, Tho06, Wil05]. Schlotz
et al. performed a study with 219 participants. Subjects who reported higher work overload and
worrying showed a stronger increase and enhanced cortisol levels after waking on weekdays.
However, this effect could not be observed on weekends [Sch04]. Similar findings around the
time of waking were made for ‘early-risers’ that show a higher CAR than people who get up
later [Kud06, Edw01]. Besides, shorter sleep is associated with a heightened CAR [Kum09].
Besides work-related stress, other environmental factors like Socioeconomic Status (SES), a
measure for the social standing of an individual in relation to others, have been shown to impact
HPA Axis activity. Previous work has already associated SES with increased psychosocial stress.
Therefore, Desantis et al. investigated the impact of low SES during different developmental
periods on the diurnal cortisol profile [Des15]. The lowest CAR, highest bedtime levels, lowest
total cortisol levels during the day were found amongst subjects with low SES from infancy
through early adulthood. This goes along with the findings of Cohen et al. who also reported
flatter diurnal rhythms with less of a decline in the evening for subjects with low SES [Coh06].
In contrast, Wright et al. report that a larger CAR is related to low SES [Wri05]. Another aspect
of circumstances of daily life is the caregiving for an elderly or sick relative which comes along
with increased stress and burden. These circumstances are associated with an altered CAR as
well [De 05, Buc04].
Within the last years, ML methods have emerged in research topics in the field of Psychology
and have been used to explore uncovered relationships. They constitute a new alternative to
conventional statistical methods. For example, Smets et al. compared six different ML methods
for distinguishing psychological stress from rest periods. The stress detection was based on
physiological signals like Electrocardiogram (ECG) or temperature during a stress test. The stress
and rest periods were best classified by Bayesian networks (84.6 % accuracy) and generalized
Support Vector Machines (SVMs) (82.7 % accuracy) [Sme16].
A lot of research has been done by Galatzer-Levy et al., for example in their work about the
‘Relevance of Machine Learning to the Study of Stress Pathology, Recovery, and Resilience’ they



11

present different ML methods that could help to identify risk or classify individuals as healthy or
ill. Besides, a lot of their work is about PTSD. They tried to predict PTSD after trauma in a study
with 957 trauma survivors with the use of SVMs and other ML methods, such as Random Forests.
The information was collected directly in the emergency room and 10 days past the event. The
data set consisted of the type of traumatic event and injury, as well as psychometric assessment,
and social support [GL14]. An Area Under the Receiver Operating Characteristics curve (AUC)

of 0.82 was reached, which could even be improved to an AUC value of 0.93 in a later work from
2017 with the use of SVMs and graph induction algorithms [GL17]. A group from the Machine
Learning and Data Analytics Lab in Erlangen with Abel et al. investigated whether it is possible
to classify stress responder groups based on biological markers. Acute stress was induced by
the Trier Social Stress Test (TSST) on two consecutive days. Cortisol and Interleukin-6 (IL-6)

samples were collected before and after the stressor and used to classify subjects into different
stress responder groups. The best results were achieved with linear SVMs for both cortisol (92.2 %
± 9.7 % for four different classes) and IL-6 (91.2 % ± 6.3% for three different classes) [Abe19].
Nevertheless, the relation of stress, especially chronic and life stress, and the diurnal cortisol
rhythm has not been investigated with ML methods yet and therefore this thesis advances research
in this field.





Chapter 4

Methods

In this chapter, the study in which the data for this work was acquired is presented first. Second,
the ML methods used in this thesis are explained. In general, two approaches were performed,
unsupervised and supervised machine learning. Both are realized including preprocessing, feature
extraction (which is the same for both models), selection of algorithms and evaluation.

4.1 Data Acquisition

The data acquisition was performed by researchers from the Chair of Health Psychology of the
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). The study took place over the course
of almost 2 years, June 2017 – July 2019 and was carried out with 171 subjects, 78 men and 93
women. The intention was to explore the determinants of life stress. Therefore, all participants
had to come to the laboratory to register at the beginning. Then, saliva samples had to be collected
at two consecutive days at home to assess the cycle of cortisol. Due to missing data, some subjects
had to be excluded for further evaluation. Finally, this leads to 107 subjects, 47 males and 60
females. The mean age was 29.67 years as shown in Table 4.1.

Health Data

All participants gave information about their size, weight and diseases. Other relevant health data
that were acquired are information about smoking habits, medication, and medical treatment.
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Table 4.1: Demographic and health information

age [years] 29.67 ± 10.25
BMI [kg/m2] 24.12 ± 5.26

Smoker [yes/no] [20/87]

Psychological Variables

During the study, all subjects filled out several questionnaires about recent stressors, anxiety,
depression, rumination but also about stressors at different stages in life, for example during
childhood or adolescence as well as questions about fundamentals such as education, housing
or work. Afterwards, scores and sums were determined from the different questionnaires, e.g.
PSS (Perceived Stress Scale), STADI (State-Trait-fear-Depression-Inventory) or FSOZU (Ques-

tionnaire about Social Support). Questions about life stress were assessed via the STRAIN Index

(Stress and Adversity Inventory), an online system for systematically assessing lifetime stress
exposure [Sla18]. Essential variables of the STRAIN are the total count of stressors (further
referred to as StressCT) and events of early adversity (further referred to as EATotCT). The
total count of stressors includes all types of stressors such as acute life events, e.g. getting fired
from a job, chronic difficulties, like caregiving for an older person and stressors in different life
domains [Sla19]. Events of early adversity are traumatic experiences that occur before the age
of 18, e.g. the divorce of the parents. The most important variables which also include variables
from the STRAIN are shown in Table 4.2. A full list of all variables assessed can be found in
Appendix A.1.

Table 4.2: Most important items from the questionnaire

PHQ Physical health complaints/ symptoms
K6 Mental health complaints/ symptoms
StressCT Count of cumulative stressors across the life span
StressTH Severity of cumulative stressors across the life span
EATotCT Count of stressors during childhood (before the age of 18)
EATotTH Severity of stressors during childhood
t1 ADSL sum Depressive symptoms within the last weeks
t1 PSS sum Perceived stress within in the last 4 weeks
t1 STADI S Current state of fear and depression
t1 STADI T Tendency to states of fear and depression
t1 ERQ suppress Strategy suppression
t1 ERQ reapp Strategy reappraisal
t1 FSOZU sum Perceived social support
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Biological Variables

The subjects were told to take the first sample directly after waking up. The next ones were then
supposed to be taken 30 minutes after, then 4 hours, 9 hours and 13 hours after the time of waking,
as presented in Figure 4.1. In addition, the subjects were instructed to write down the exact times
when the saliva samples were taken. These samples were analysed for cortisol and alpha-amylase
in a laboratory. Additionally, IL-6, a marker for inflammation, was determined from blood in the
laboratory at the beginning. An example of diurnal cortisol rhythm that was picked randomly
from the dataset is shown in Figure 4.2

Time	after
waking	[h]4 9 130.50

Figure 4.1: Saliva collection times

Figure 4.2: Example of a Diurnal Cortisol Rhythm from the dataset, CAR marked in dark red
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4.2 Feature Extraction

In order to apply machine learning techniques to a given problem a typical approach for facilitating
the subsequent learning process is to extract relevant and non-redundant features from the dataset.
These features were obtained from the samples of the diurnal cortisol rhythm. For every subject,
the Area Under the Curve (AUC) was computed. According to Pruessner et al. there are two
possible definitions for the term “Area under the Curve” [Pru03]:

• The Area under the curve with respect to ground(AUCg) (Eq: 4.1)

• The Area under the curve with respect to increase(AUCi) (Eq: 4.2)

Area under the curve with respect to ground

The Area under the curve with respect to ground represents the cortisol output during the day,
more specific from the point of waking, when taking the first saliva sample until the point of time
of the last cortisol sample. The AUCg (4.1) is computed based on the summation of trapezoids

AUCg =
n−1∑
i=1

(mi +m(i+1)) · ti
2

(4.1)

(a) with respect to ground (AUCg) (b) with respect to increase (AUCi)

Figure 4.3: Area under the curve of one cortisol rhythm. Measurements m1 to m5 at time points
t1 to t5 are denoted as blue dots.
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with ti denoting the time intervals between the measurements mi and m(i+1). In this case t
and m range from 1 to 5, which is also visible in Figure 4.3a where the markers represent the
measurements.

Area under the curve with respect to increase

The Area under the curve with respect to increase emphasizes changes over time. It is more a
measure of decrease than an area as its values are mainly negative due to the decrease of the
cortisol level over the day. An example can be seen in Figure 4.3b. The AUCi is computed by
subtracting the baseline (i.e. the value of the first sample) from all measurement points [Pru03].

AUCi = AUCg −m1 ·
n−1∑
i=1

ti =
n−1∑
i=1

(
(m(i+1) +mi)

2
−m1

)
· ti (4.2)

Slope

Another common feature for characterizing the diurnal cortisol rhythm is the slope, which
describes the degree of change of the indicator [Ada17], in this case, the level of salivary cortisol.
The slope is computed by building the difference quotient between two measurement points mi

and mk.
s =

mn −m0

tn − t0
(4.3)

with mn and m0 representing the last and the first measurement. In this work, two different
variants were used as features – the slope over the whole day and the slope of the CAR, which is
the incline between the first two measurements. As some of the subjects didn’t take the first sample
exactly 30 minutes after waking, but e.g. after 25 minutes, the value of this second measurement
was interpolated to exactly 30 minutes via linear interpolation, because even a few minutes may
impact this value considerably [Clo04].

As the Cortisol Awakening Response (CAR) is a very important part of the whole diurnal cycle,
CAR-specific features were computed for the characterisation of different cortisol awakening
responses:

• The Area under the Cortisol Awakening Response with respect to ground (AUCCARg )

• The Area under the Cortisol Awakening Response with respect to increase (AUCCARi
)

Both were computed with the trapezoidal rule but only for the first three measurements.
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All features were computed per subject and separately for the first and the second day. Another
approach was to compute the mean over both days and the difference between the two days. As
the use of both feature extraction variants is ambiguous, either the features of day 1 and day 2
separately or the combination of mean and difference were used.
Since the feature ranges are highly different, they were normalized using z-score normalization
which subtracts the mean value of the feature distribution from each sample and divides it by the
standard deviation (see Equation 4.4). This is necessary for some clustering and classification
algorithms to work properly.

z =
(x− µ)
σ

(4.4)

After z-score normalization, all feature distributions have a mean value of 0 and a standard
deviation of 1.

4.3 Unsupervised Learning

Since in previous studies mainly statistical methods were used to evaluate a single hypothesis,
this work attempts to utilize more complex ML methods to analyse more intricate relations. First,
unsupervised methods were used in order to find meaningful clusters within the study population.
The goal in unsupervised learning is to find groups of similar examples when no class membership
is known [Bis07]. In a first step, different clustering algorithms are applied to features extracted
from the cortisol samples in order to find different groups of cortisol patterns. Afterwards, it was
analyzed whether different cortisol profiles can predict differences in psychological variables
between these groups.

4.3.1 Clustering Algorithms

KMeans

The KMeans algorithm attempts to find groups in a set of unlabelled data. The number of clusters
k that will be found has to be determined before. The KMeans algorithm initializes the k clusters
by setting k random points in the data set to form the initial cluster centres. The points closest
to each centre are identified and assigned to the corresponding cluster. Next, the mean values
of each cluster are determined and set as new cluster centres. These two steps are repeated
until convergence [Has17]. One iteration of the KMeans algorithm can be described by the
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(a) k = 3 leads to desired
clustering result

(b) k = 2 still converges, but
leads to adverse outcome

Figure 4.4: Randomly generated blobs clustered with KMeans and different number of clusters

minimization of the objective function J in Equation 4.5, which represents the sum of squared
Euclidean distances of each data point to its cluster center.

J =
N∑

n=1

K∑
k=1

rnk‖xn − µk‖2

with: rnk =

1 ifxn ∈ k

0 else

(4.5)

It represents the sum of the square of the distances of each data point to its cluster centre µk. For
every observation xn a set of binary indicator variables rnk ∈ {0, 1}, with k = 1, ...K describes
which cluster K the point xn is assigned to in order to only sum up the distances between samples
and the cluster centers they belong to, respectively [Bis07]. In this work, the set of features was
used as input data in different variations, day 1 and day 2 separately and the combination of
mean and difference between both days. Since the number of different clusters in the dataset is
unknown, different values of k, k ∈ [2, 4], were used for the unsupervised learning process. As
the example in Figure 4.4 yields, the number of clusters that should be found by the clustering
algorithm is crucial for the result of the clustering process. An inadequate number of clusters still
leads to the algorithm to converge, but the results might be misleading.
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Figure 4.5: Dendrogram of Agglomerative Clustering with linkage = ward, vertical height of
the dendrogram shows the Euclidean distances between the points of the horizontal axis

Hierarchical Clustering

In comparison to the KMeans algorithm Hierarchical Clustering does not need a pre-defined
number of clusters that should be found, but the specification about the dissimilarity between the
groups has to be set before. The hierarchy of clusters is represented as a tree with the root forming
a unique cluster which contains all the other clusters (see Figure 4.5).
In this work a bottom-up strategy of hierarchical clustering, called Agglomerative Clustering was
used. Hereby, a pair of selected clusters is merged into a single one [Has17]. Therefore, a measure
of dissimilarity has to be defined before in order to decide which two clusters are closest. The
distance between the observations used in this case is called ward and minimizes the variance of
the clusters that are going to be merged. The dissimilarity between clusters A and B is expressed
by the formula

d(A,B) =

√
2 ∗ |A||B|
|A|+ |B|

∗ ‖−→cA −−→cB‖2 (4.6)

with A as centroid of cluster −→cA and B as centroid of cluster −→cB respectively. As shown in
Figure 4.5 the points closest to each other are determined first. This is e.g. represented by the
connection of point 25 and 28 on the very right bottom which then form a cluster. The absolute
euclidean distance is displayed on the vertical axis. The process of finding the closest point or
cluster is performed until all points are joint in a single cluster, represented by the root of the tree.
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4.3.2 Evaluation

The result of the clustering process can be evaluated by the validity measure Silhouette Coefficient.
The silhouette S(o) of an object o from cluster A is defined as the difference between the distance
of object o to the closest cluster B and the distance of object o to cluster A, weighted by the
maximum of both distances (see Equation 4.7).

S(o) =
dist(B, o)− dist(A, o)

max{dist(B, o), dist(A, o)}
(4.7)

This leads to silhouette values between -1 and +1, with a value of:

• +1 indicating that o is assigned to the correct cluster

• 0 indicating that o lies equally far away from both clusters

• -1 indicating that o is possibly assigned to the wrong cluster (i.e. closer to cluster B than to
cluster A)

From the silhouette, the silhouette coefficient s, which is the arithmetric mean of all silhouettes of
a cluster C, i.e. the silhouettes of all objects o belonging to cluster C, can be computed for either
a single cluster or the whole dataset (Equation 4.8) [Rou87].

sC =
1

nC

∑
o∈C

s(o) (4.8)

For visualization, a silhouette plot, which plots the silhouette of each object o is used, which helps
to find the correct number of clusters as well. The silhouette plot in Figure 4.6 shows that the
mean coefficient over all samples is higher for 3 clusters than for 2, which implies that the data is
better represented by 3 clusters than by 2. The mean silhouette coefficient serves as a measure for
the quality of the clustering process.

The investigation of the differences in the psychological variables between the groups is done
by applying a Analysis of Covariance (ANCOVA). The psychological variables, e.g. Total Count

of Stressors serve as dependent variable and disease and cortisone medication as covariates. In
general, an ANCOVA determines the correlation between the covariates and the dependent variable
and removes the variance, which is associated with the covariates from the dependent variable
scores [Rut01].
The results of the ANCOVA consist of p-values and F-values. A p-value below the level of
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(a) Silhouette plot for 2 clusters and visualization of clustered data

(b) Silhouette plot for 3 clusters and visualization of clustered data

Figure 4.6: Silhouette plots for randomly generated blobs, mean silhouette coefficient presented
by the vertical dashed line

significance (α), which is usually 5%, allows to reject the null hypothesis. In this case, it means
that we can assume that the subjects belong to different groups – the groups that were found by
the clustering algorithm. But, as the ANCOVA was performed with m = 13 different variables,
a multiple testing correction had to be applied. This was done to prevent the incorrect rejection
of the null hypothesis, due to the occurrence of a rare event which is more likely to happen with
multiple hypotheses. The chosen method was Bonferroni correction, so the null hypothesis can be
rejected for every

p ≤ α

m
=

5%

13
= 0.00385 (4.9)
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4.4 Supervised Learning

Another machine learning approach that was utilized in this thesis is supervised ML. Different
classifiers were applied to predict the group of stress responder a person belongs to, based on their
cortisol profile.

4.4.1 Preprocessing

Data Labeling

For the classification approach, each sample needs to be assigned to a class in advance (also
referred to as labelling). During the classification process, the algorithm then attempts to learn the
class membership based on the provided training data. The performance of the resulting model is
then usually evaluated on a separate dataset. As the group that a person belongs to, which would
serve as a label, is not present in the dataset, a bootstrapping approach to generate labels based on
survey-assessed variables, such as the total count of stressors a person had experienced, had to
be performed. In this work, two different approaches were realized to assign labels to specific
subjects.
One way is to predict the label by clustering the variable into k different groups. This is done
by performing KMeans on a single variable from the questionnaire. For k = 2, this would for
example split the population into High Stress and Low Stress groups. If the clustering of one
variable yielded groups that consisted of less than 3 subjects, this variable was rejected for further
classification.
Another attempt for grouping the data is to divide them by performing percentile-based splits. In
the case of two groups data is split by the median – the 50th percentile – into a Low Responder

(below median) and a High Responder (above median) group. These two approaches were per-
formed with the most important survey-assessed variables from Table 4.2, which were determined
by psychological experts. This lead to different labels which were then used separately for the
classification process.

Oversampling

To overcome the problem of an imbalanced class distribution, a synthetic minority oversampling
technique is used to balance the classes after the labelling process. Otherwise, the classifier mainly
trains on the majority class which leads to poor performance. The algorithm chosen is SMOTE

from the imbalanced-learn library [Wan06]. This oversampling method synthetically



24 CHAPTER 4. METHODS

def cluster_var(self, variable, n_clusters):
data = self.df_full[variable]
x = pd.DataFrame(data, index=self.

dict_df_wide[’cort’].index)
### remove subjects with no input for this variable
x = x.replace(0, np.nan)
x = x.dropna()
### clustering with KMeans
k = KMeans(n_clusters= n_clusters).fit_predict(x)
res = pd.DataFrame(x)
res = res.rename(columns={0: variable})

k = pd.DataFrame(data=k, index = x.index)
k = k.rename(columns={0: ’group’})
### DataFrame ’r’ with input variable and cluster group
r = pd.concat([res, k], axis=1)

return r

Listing 4.1: Generation of Labels by Clustering

creates additional samples for the minority class. By searching for the k nearest neighbours of xi,
the nearest neighbour x′ is chosen and via

x− new = xi + (x′ − x− i)× δ

a new sample xnew is generated and contributes to the minority class. δ is a random number
∈ [0, 1] [Zhe15]. In this work, a value of k = 3 was chosen for the oversampling algorithm.

Feature Selection

One common problem when training classification models with a high number of features is that
it tends to overfit, i.e. that it learns the structures of the training data well, but performs weakly
on the testing data [Caw10]. Additionally, an increase in features leads to a strong increase in
the complexity of the classification problem. One approach to counteract these issues and to
reduce the number of features used for classification is performing a feature selection beforehand.
This is also important as single features may carry good classification information when treated
separately but not together in a combined feature vector [The09]. The method chosen for feature
selection in this work was Select K Best [Ped11] with the score function f classif which
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Figure 4.7: Nearest Neighbour Classification, here: k = 5

selects the k best features with the best Analysis of Variance (ANOVA) F-value. The F-value is
the variance between groups divided by the variance within groups. A large F-value indicates
that the difference of the means between the groups is higher than the variation of the individual
observations in the group [Kim14]. The selection algorithm was performed with 1 to 12 features
and the classifier was trained with the new input of selected features.

4.4.2 Classification Algorithms

K Nearest Neighbours

The first classifier used is the K Nearest Neigbbor (kNN) classifier [Ped11]. For a query point x0,
the k nearest training points are found and x0 is assigned to the class which forms the majority of
the k nearest neighbours of x0 [Has17]. For the distance, the Euclidean distance d(i) = ‖x(i)−x0‖
is used. In Figure 4.7, the light blue point has to be assigned to a group. Firstly, the distances to
the k nearest neighbours of the groups around are determined and the point is assigned to class 3
based on the majority vote (5 out of 5 neighbours belong to class 3, 0 out of 5 neighbours belong
to class 1 and 2). The only parameter that needs to be tuned for the kNN classifier is the number
of neighbours k.

Support Vector Machines

When trying to separate two classes, it seems very easy to find a decision boundary when the
classes are clearly separable (Figure 4.8). Thereby, an infinite number of possible linear decision
boundaries can be found, but the challenge is to find the optimal one that also reaches good results
with new, unseen data. Support Vector Machines (SVM’s) help to solve this problem as they train a
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(a) Possible decision bound-
aries for the separation of 2
classes

(b) Support Vector Machines Classi-
fier, decision boundary as solid line,
margin as dashed line

Figure 4.8: Classification of 2 clearly separable classes

decision boundary that maximizes the margin, leading to an optimal hyperplane that separates the
data [Gun98]. An example of two classes, with some of the possible decision boundaries, is shown
in Figure 4.8a. In Figure 4.8b the optimal boundary is presented by the solid line in the middle.
The margin is the distance between it and the nearest points of each class, which is represented by
the dashed line. However, by maximizing the margin, the rate of misclassification is increasing as
well. The parameter C of the Support Vector Classifier (SVC) algorithm, the so-called penalty

parameter, defines how large or small the margin should be [Ped11]. A large value of C will
hardly allow any misclassification and leads to an overfitting boundary. A small value for C
increases the margin and leads to a smoother boundary. An optimal value for C as well as a kernel
function have to be chosen. The kernel function defines the inner product in the transformed
space, because as the data set used may not be linearly separable anymore, a linear hyperplane
can be found when being mapped into a higher dimensional space [Gun98]. Possible kernels are,
linear, polynomial kernel (1 + 〈x, x′〉)d and a radial basis function kernel (exp(−γ‖x− x′‖2))
[Has17]. The selection of the best parameters results in the optimal separating hyperplane which
is not just a line anymore for a more complex problem with higher dimensional data.

Random Forest

The last classifier used is the Random Forest classifier. A Random Forest is composed of many
individual decision trees, where one tree consists of data that is continuously split up according to
a certain parameter. For each possible outcome (i.e. class) one branch is created [Utg97]. The
decision trees form an ensemble of trees where every tree separately predicts a class. The final
class membership of one sample is determined by majority vote of all trees. To set up such a
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Table 4.3: Parameters to be optimized with Randomized Search for Random Forest Classi-
fier

Parameter Description Value range
max depth maximum depth of the tree [80, 90, 100, 110, 200]

min samples leaf minimum number of samples required
to be at a leaf node [3, 4, 5]

min samples split minimum number of samples required
to split a node [8, 10, 12]

n estimators number of estimators
(i.e. number of trees in the forest) [100, 200, 300, 1000]

forest of trees bootstrap aggregating is used in order to create a large collection of de-correlated
trees [Has17]. Each new training set is drawn from the original training set with replacement and
a tree is grown on it using random feature selection [Bre01]. For growing the tree the best split
point has to be picked in each step to split the node into two daughter nodes until the minimum
node size is reached. At each node, a predictor generates a splitting variable which splits up
the training set into different subsets [The09]. The splitting criterion used in this case is Gini

Impurity which measures how often a randomly chosen element would be labelled incorrectly.
The parameters to be optimized for the Random Forest Classifier are displayed in Table 4.3. The
value ranges were adapted to the classifier’s performance for further evaluation.

4.4.3 Evaluation

Cross Validation

In order to evaluate the classification performance, the data was split up into a training and a
complimentary test set. This has to be done to see how the model performs on data that it has not
seen before. The training set is used to train the model which is then tested on the unseen data
from the test set. The cross-validation method chosen here is Stratified K Fold [Ped11] where
the data is split up k times. This leads to an overall accuracy which is the average classification
accuracy of the k folds. Hereby, the stratified partitioning leads to the same proportion of classes
in each subset [Mul00]. The cross-validation split is also presented in Figure 4.9 where the data is
split up via Stratified K Fold. The training set is then again used for cross-validation in the next
step.
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 Cross Validation:
 Stratified-5-Fold

80% Training Set 20% Test Set

 Grid Search CV: parameter tuning
 5-Fold

80% Training Set 20% Test Set

Best performing
classifier

X: computed
features,
normalized

y Select K best
features (1 to 12)

 X with K features

Oversampling
(SMOTE)

Figure 4.9: Cross Validation and Feature Selection Pipeline

Parameter Tuning

To find the best parameters for the kNN and SVMs classifiers, a Grid Search algorithm [Ped11] was
applied. During grid search, every possible combination of parameters is systematically evaluated
in order to find the best-performing parameter set. It evaluates the best number of neighbours
k for the kNN classifier as well as the best C value and kernel function for the Support Vector

Classifier. The best hyperparameters for the Random Forest Classifier are found via Randomized

Search [Ped11], as it takes only a small fraction of the computation time of Grid Search.

Classification Performance

The performances of the classification algorithms can be evaluated by their mean accuracy.
Accuracy is defined as

Accuracy =
Number of correct predictions
Total number of predictions

(4.10)
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[Gar09] and is computed on every test data from the cross-validation split.
Another good measure for the performance of a classification algorithm is Sensitivity and Speci-

ficity. They are both computed from the values of the confusion matrix which contains True

Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN). Sensitivity is
defined as

Sensitivity =
TP

TP + FN
(4.11)

and means that, e.g. within a test for a certain disease, a person with disease is correctly classified
as ‘diseased’. On the other hand, Specificity is defined as the ability of the test to classify a healthy
person as ‘healthy’ and is computed via

Specificity =
TN

TN + FP
(4.12)





Chapter 5

Results

In this chapter, the results obtained from the previously explained methods are presented. The
outcomes of the unsupervised learning approach are summed up first. The second part deals with
the results from the classification process and the corresponding preprocessing steps.

5.1 Unsupervised Learning

Silhouette Analysis

The clustering process was performed with both features computed per day and their mean and

difference, KMeans and Agglomerative Clustering and different groups of clusters. First, the
correct number of clusters had to be chosen which was done with a silhouette analysis. In Table 5.1
the mean silhouette scores from the different combinations of features, feature computation and
algorithms are displayed. It is visible that there is just a slight difference between the scores
of different numbers of clusters and also between the algorithms. A concrete example of the
silhouette analysis is given in Appendix B.1 where the silhouette coefficient is plotted for the
features AUCi and Slope for a number of 2, 3 and 4 clusters found with KMeans Clustering.
In Figure 5.1, the results for different number of clusters seem quite similar. However, after

consultation with psychological experts n = 4 clusters and clustering with KMeans based on
AUCCARg seem to be the most interpretable result. As displayed in Figure 5.1c, it leads to 3
clusters that are in line with previous findings from literature – cortisol profiles with totally flat
curves (i.e. no CAR at all), profiles with a flattened CAR and profiles with a higher, “regular” CAR.
Cluster 3 (displayed as light-blue in Figure 5.1c) only consists of two members which can be
considered as ‘outliers’ as their rise of cortisol in the morning exceeds the typical increase stated
in literature (about 50-60%) by far [Pru97]. Therefore, in the further analysis, the outlier group is
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Table 5.1: Mean silhouette coefficient for clustering with KMeans or Agglomerative Cluster-
ing, based on one or two features, for n clusters ∈ [2, 4], maximum of each configuration
highlighted in italic

Kmeans Agglomerative

Feature computation
based on days mean/difference days mean/differnce

1 Feature n clusters:
2 0.476 0.466 0.454 0.547
3 0.399 0.415 0.377 0.400
4 0.377 0.441 0.378 0.418

2 Features n clusters:
2 0.399 0.369 0.413 0.376
3 0.306 0.320 0.320 0.293
4 0.285 0.303 0.286 0.272

(a) 2 clusters, class distribution
[65/42]

(b) 3 clusters, class distribution
[53/51/3], cluster no. 2 contains
outliers

(c) 4 clusters, class distribution
[26/37/42/2], cluster no. 3 con-
tains outliers

Figure 5.1: Clustering results of cortisol profiles with different number of clusters. Data were
clustered based on feature AUCCARg per day and KMeans algorithm. Results show that n = 4
clusters lead to the most reasonable profiles, that are in line with the current state of research.

excluded which leads to a total cluster number of n = 3 with 105 subjects. In comparison, when a
number of only 3 clusters is applied from the beginning, different clusters are found as presented
in Figure 5.1b: profiles with totally flat curves (51 subjects), profiles with slightly flattened curves
53 subjects) and 3 outliers which show an abnormal, very steep CAR. With this process, the 3
rhythms that are also known from literature could not be found. Additional clustering results with
other features and different numbers of clusters can be found in Appendix B.2.
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(a) Clustered with KMeans, class distribu-
tion [23/45/37]

(b) Clustered with Agglomerative cluster-
ing, class distribution [23/40/42]

Figure 5.2: Clustering results of cortisol profiles with different clustering algorithms and n = 3.
Clustering based on AUCCARg per day, similar clusters are found, but class distribution is slightly
different

Clustering Algorithms

The different curves, determined by KMeans and Agglomerative Clustering based on feature
AUCCARg for each day separately are displayed in Figure 5.2. Hereby, the clustering algorithms
nearly find the same clusters, there is just a slight difference in the distribution. The 2 outliers
were already excluded. For that reason, further analysis only looks at the clusters obtained from
the KMeans algorithm.

Correlation with Variables

As next step, the outcome of the clustering process is correlated with the most relevant variables
assessed in the questionnaire. This is done by performing an ANCOVA with the groups found by
the clustering algorithm.
The outcome of the ANCOVA with ‘disease’ as covariate is shown in Table 5.2. Results show
that the control variable ‘disease’ has a considerable impact on the distribution of the variables
analyzed in this thesis. This is also visible in the boxplot of variable StressTH in Figure 5.3 which
shows the variable distribution for the different clusters for people with disease and without. More
boxplots of other variables assessed via STRAIN, can be found in B.3, B.4 and B.5. Amongst
subjects with disease, the range is much wider within each cluster group. In consultation with
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Table 5.2: Results of ANCOVA between the 3 groups found with KMeans and control variable
‘disease’. p-values below the corrected significance level are highlighted in italic

Variable Source p-value F-value

PHQ cluster 0.0427 3.253
disease 0.0345 4.591

K6 cluster 0.8890 0.118
disease 0.0223 5.387

StressCT cluster 0.3845 0.965
disease 0.0007 11.962

StressTH cluster 0.6520 0.430
disease 0.0001 16.099

EATotCT cluster 0.7278 0.319
disease 0.7675 0.088

EATotTH cluster 0.5424 0.615
disease 0.3014 1.079

t1 ADSL sum cluster 0.2404 1.446
disease 0.0002 14.613

t1 PSS sum cluster 0.6175 0.484
disease 0.0002 14.547

t1 STADI S cluster 0.5050 0.688
disease 0.0181 5.769

t1 STADI T cluster 0.9990 0.001
disease 0.0040 8.691

t1 ERQ suppress cluster 0.1909 1.683
disease 0.4331 0.619

t1 ERQ reapp cluster 0.2208 1.533
disease 0.7849 0.075

t1 FSOZU sum cluster 0.9505 0.051
disease 0.0036 8.878

psychological experts, this implies that people with a disease would have to be regarded separately.
This analysis would be more complicated as ‘disease’ means any physical or mental disease and
would require a more specific investigation. Therefore, people who stated to have any form of
‘disease’ are excluded for the final part of the analysis, which leads to 50 subjects who declared
to be disease-free. As a last step, an ANOVA is performed on the 13 psychological variables, as
subjects with disease are not considered and no control variable is necessary anymore. The results
of the ANOVA are presented in Table 5.3. No variable lead to a significant outcome with a p-value

below 0.385%.
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Figure 5.3: Boxplot of variable StressTH for 3 clusters, the notch in the boxplot marks the
confidence interval (95%), the diamonds present outliers. Boxplots show that the variable range
is wider for people with disease

Table 5.3: Results of ANOVA for most relevant variables, no significant p-values (<0.385%)

Variable p-value F-value
PHQ 0.3475 1.081
K6 0.8136 0.207
StressCT 0.7794 0.251
StressTH 0.9912 0.009
EATotCT 0.4958 0.712
EATotTH 0.5803 0.551
t1 ADSL sum 0.9933 0.007
t1 PSS sum 0.2676 1.356
t1 STADI S 0.7327 0.313
t1 STADI T 0.3247 1.152
t1 ERQ suppress 0.2365 1.487
t1 ERQ reapp 0.7031 0.355
t1 FSOZU sum 0.1962 1.686
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5.2 Supervised Learning

Feature Selection

After the generation of labels, the classification pipeline began with the selection of the best
features. The results of the Select K Best algorithm depend on the labelling process, whether it
was done by clustering or percentile split. Additionally, they are dependent on the variable that it
was split on, as this determines the distribution of the features within a group. In Table 5.4 the
F-values of all features are presented for the computation for each day separately and the mean
and difference between the days. The labels were generated by clustering based on the variable
Total Count of Stressors as this variable delivers good results in the whole classification process.
Hereby, it is visible that the features’ scores were not significantly better for one or the other
approach. Therefore, they are both investigated further.
The feature selection algorithm was performed with k ∈ [1, 12] but the number of features highly
varied between the different variables and classifiers. For the further presented classification
results, for each variable and classifier, the best combination of 1 to 12 features was used, i.e. the
subset of features that lead to the highest accuracy.

Table 5.4: Scores (ANOVA F-values) for variable ‘Total Count of Stressors’ for feature computa-
tion methods, maximum scores of each approach highlighted in bold

F-values (ANOVA)
Feature per day mean/difference
AUCg day 1 0.0256 mean 0.0237
AUCg day 2 0.0147 difference 0.0106
AUCi day 1 1.1266 mean 2.0510
AUCi day 2 1.9379 difference 1.2455
AUCCARg day 1 0.2601 mean 0.1965
AUCCARg day 2 0.0935 difference 2.0282
AUCCARi

day 1 0.2404 mean 1.1473
AUCCARi

day 2 1.5785 difference 0.3168
Slope day 1 3.3181 mean 4.6918
Slope day 2 3.7636 difference 0.1495
SlopeCAR day 1 0.3010 mean 0.7562
SlopeCAR day 2 0.9652 difference 0.3023
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Classification

When searching for the best performing classifier, the best parameters for all three classifiers were
found with Grid Search CV and Randomized Search CV [Ped11]. The list of parameters with the
corresponding accuracies for the Support Vector Classifier are shown in Table 5.5. A random fold
from the Stratified K-Fold was picked, with the average accuracy over the 5 cross-validation folds
within the Grid Search algorithm. The highest accuracies throughout all 5 cross-validation folds
were obtained by applying the radial basis function kernel and a C value of 100.
In general, the best results were obtained for the classification of 2 classes with labels based on
clustering, so the focus lies on this part of the classification results. The accuracy of the algorithms
varied between the variables as well. The most significant results of the different classifiers are
presented for both feature computation methods individually in Table 5.6 and Table 5.7.
For the classification with features computed for each day, Random Forest Classifier performed
best, for the other approach SVMs lead to the highest accuracy.

Table 5.5: Grid Search Results for SVM with variable ‘Total Count of Stressors’, best result
highlighted in italic

C kernel Mean test score (%)

1
linear 64.3
poly 66.7
rbf 65.9

10
linear 68.3
poly 69.0
rbf 81.0

100
linear 70.6
poly 77.0
rbf 81.0
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Table 5.6: Classification Results: Variable with the highest Accuracy in % (Mean ± Standard
Deviation). Classification based on feature computation with mean and difference of the 2 days,
best performing classifier highlighted in italic.

Variable Classifier Accuracy Number of
features used

Total Count of
Stressors

SVM 77.7 ± 7.5 10
kNN 71.9 ± 5.6 9
Random Forest 71.4 ± 10.0 12

Count of Stressors
during Childhood

SVM 69.0 ± 5.6 9
kNN 58.9 ± 13 1
Random Forest 68.0 ± 8.8 4

Table 5.7: Classification Results: Variable with the highest Accuracy in % (Mean ± Standard
Deviation). Classification based on feature computation for each day seperately, best performing
classifier highlighted in italic.

Variable Classifier Accuracy Number of
features used

Total Count
of Stressors

SVM 68.5 ± 14.3 10
kNN 65.6 ± 11.9 7
Random Forest 69.4 ± 12.3 7

Count of Stressors
during Childhood

SVM 73.0 ± 4.8 12
kNN 71.2 ± 7.3 1
Random Forest 74.6 ± 10.6 1

The confusion matrices of SVMs and Random Forests are shown in Figure 5.4 for the mean
and difference feature computation and in Figure 5.5 for the features per day, respectively. From
the confusion matrix Sensitivity and Specificity can obtained. For example SVMs classify a person
from class 1 (‘positive’ class) as such with a probability of 81%, whereas just 32% of the subjects
from the ‘negative’ class (class 0) are detected as such.
It is visible that mostly more than half of class ‘0’ is misclassified as class ‘1’. Only Random

Forest based on feature’s mean and difference achieves to predict the classes correctly with an
accuracy of 78% for class ‘0’ and 63% for class ‘1’.
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(a) Support Vector Classifier,
Mean Accuracy 77.7±7.5%

(b) Random Forest, Mean Ac-
curacy 71.4±10%

Figure 5.4: Confusion matrix in %, 2 classes, variable StressCT, Feature’s mean and difference,
class distribution [‘0’: 28/ ‘1’: 79]

(a) Support Vector Classifier,
Mean Accuracy 73.0±4.8%

(b) Random Forest, Mean Ac-
curacy 74.6±10.6%

Figure 5.5: Confusion matrix in %, 2 classes, variable EATotCT, Features per day, class distri-
bution [‘0’: 19/ ‘1’: 88]





Chapter 6

Discussion

6.1 Unsupervised Learning

The first step of this work was to perform unsupervised learning and to find different groups of
diurnal cortisol rhythms. At the beginning, the appropriate number of groups had to be found.
It turned out that deciding for the number of groups only based on the highest score from the
silhouette did not lead to the best solution. According to the scores, 3 clusters would have been the
best choice, but when looking at the curves, the detected groups were found to be not reasonable.
Together with psychological experts, the appropriate number could be found by investigating the
differences in the cortisol profiles of the clusters. A descriptive analysis revealed that out of the
4 classes one group can reliably be considered as ‘outliers’ whereas the other 3 classes can be
considered as ‘expected’, as they are in line with profiles previously reported in literature. The
outliers showed an increase of cortisol of up to 90% after waking up, which is a much stronger
response than normal [Pru97]. To investigate whether this happened due to measurement errors or
whether a certain condition is related to such an enhanced response, a larger dataset with more
subjects belonging to this group would be needed.
When choosing the clustering algorithm, quite similar results were obtained for both KMeans and
Agglomerative Clustering. In further steps of variable correlation, it turned out that KMeans lead
to better outcomes, even though the performance highly depends on the variable and the features
used for clustering. Besides, due to the lower complexity of KMeans, this was the algorithm of
choice.
From the ANOVA with different features and feature computation methods it turned out that the

use of one feature computed for each day separately was the best option. During the discussion
with psychological experts, the clustering of the curves based on the Area under the Cortisol
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Figure 6.1: Cortisol rhythms over all subjects per cluster. Subjects with disease
hardly differ from healthy subjects.

Awakening Response (AUCCARg ) was found out to work best. The CAR is a very important part
of the diurnal rhythm and mainly characterizes the whole cycle. That is why the groups can be
distinguished best based on this feature. The combination of many features produced unclear
outcomes with no ‘typical’ courses of cortisol.

During the process of variable correlation, it was proved that the factor ‘disease’ has a very
large impact on the distribution of the psychological variables. As seen in the boxplot (Fig.: 5.3),
the range of the variable values is very wide. A possible explanation is the loose definition of
‘disease’ and hence the heterogeneity of this variable. Disease can include e.g. an acute cold
but also depression which lead to very different outcomes in the questionnaire. This could also
be seen in the results of the ANCOVA, where the p-values for every variable differed very much
when controlling for disease. However, it is interesting that disease does not impact the course
of the diurnal rhythm as shown in Figure 6.1. Here, the curves are hardly distinguishable, a
difference is only observable in survey-assessed variables. To find out how disease impacts the
diurnal cortisol rhythm and the psychological variables, different groups of diseases need to be
defined which then have to be investigated separately. With a simple ‘yes or no’ variable, no anal-
ysis of the linkages between the cycle of cortisol and the psychological variables can be performed.

In the last step, the analysis of differences among the groups ‘disease’ and ‘non-disease’
using ANOVA, no statistically significant results were found. None of the p-values was below
the corrected level of significance (0.0385%). This outcome does not allow to reject the null
hypothesis for any of the variables. Nevertheless, the clusters found can be explained with the
boxplots of the variables StressCT and StressTH in Figure 6.2 very well. The subjects that belong
to the ‘regular’ curve group (cluster ‘0’) show the overall lowest values for both StressCT and
StressTH and the range of values for both variables is not as wide as for the other two groups.
According to previous work, people who show an altered CAR or even no CAR experience more
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stressors and also rate them with a higher severity [Ste16, Fri09]. When looking at the two altered
curves and corresponding variable distributions it can be assumed that the severity of the stressors
experienced is decisive for the group that shows a completely flat curve without a CAR, as the
values of that variable began at a higher level and reached higher than for the group with a flattened

(a) Final clusters, subjects with disease excluded, 3 ‘typical’
curves: ‘regular’ curve: cluster ‘0’, ‘flattened CAR’: cluster
‘1’ and ‘no CAR’: cluster ‘2’

(b) Boxplot for variable
StressCT for 3 clusters

(c) Boxplot for variable
StressTH for 3 clusters

Figure 6.2: Results of clustering process for healthy subjects and corresponding boxplots. The
notch in the boxplot marks the confidence interval (95%), the diamonds present outliers
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CAR. So, despite the non-significant results form statistics there is still evidence from descriptive
analysis for a relationship between the biological and the psychological variables which have to
be investigated further.

6.2 Supervised Learning

The results of the classification process showed that no reliable prediction of the group of diurnal
cortisol profiles could be made. Even with the right combination of features and parameter
optimization, the highest accuracy achieved was 77.7 ± 7.5 % (for SVMs). Nevertheless, the best
classification was made by Random Forests classifier for variable EATotCT, because it reached
both the highest sensitivity and specificity. The problem with the other classifiers was that despite
the quite high accuracy only 39% or less of the members of class ‘0’ could be predicted. This
could be explained by the fact that class ‘0’ was the minority class and the classifier tends to learn
better on the majority class (class ‘1’) and more often misclassifies the other class. When creating
the labels by dividing the variables by their median, balanced classes were created. However,
the problem with this approach was that often the same value for a variable was present in both
classes due to the strict median split and values existing multiple times for different subjects.
Therefore, the classification with these labels has not been investigated further.
Another explanation for the bad classification performance is the labelling process. A well-known

paradigm in machine learning is that a classifier only performs as good as the labels provided.
However, in this work, no ground truth labels were provided and, therefore, had to be generated.
When the labels are not correct, the classifier cannot perform well. This also becomes visible
regarding a pair plot of the features used for classification (Figure: 6.3). The groups based on
labelling by clustering the variable StressCT are marked in different colours. The figure shows
that the groups are not distinguishable at all based on the computed features. Also in Figure 6.4
the cortisol profiles look quite the same for both groups determined by the labelling process.
Accordingly, to improve the result of classification, another way to provide labels has to be found.
Another possibility, which can be investigated in future work, would be the usage of other features
which might differentiate the different groups better.
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Figure 6.3: Pairplot of features used for classification with SVM and variable StrsessCT for
labelling. The groups found by clustering are not clearly separable in the features of cortisol
rhythm.

Figure 6.4: Cortisol Profiles of the groups determined by clustering variable StressCT





Chapter 7

Conclusion and Outlook

The goal of this thesis was to identify different stress responder types based on their diurnal
cortisol profile with the help of different ML methods and the interpretation of the outcome with
regard to the current state of research. Furthermore, it had to be examined whether a prediction of
the cortisol profile based on psychological survey-assessed variables is possible. The base of this
work was a dataset from a study with 107 subjects that included the diurnal course of cortisol on
two consecutive days, and the scores obtained from different psychological questionnaires.
The exploration of diurnal cortisol rhythms and their relation to psychological variables was
performed with 2 different machine learning approaches. The supervised approach – consisting of
classification and prediction of the cortisol profiles – was not possible with the algorithms used in
this work. Neither SVMs, kNN nor Random Forests were able to reliably predict labels that were
generated from the survey-assessed variables with simple methods. The main problem was the
absence of labels that would serve as ground truth in the data and the imbalance of classes resulting
from the performed labelling process. In future work, another possibility to get concrete labels,
e.g. from expert knowledge and the exploration of other algorithms could improve classification
and make subsequent prediction possible.
Within the other approach, the clustering methods applied were able to separate typical cycles
of cortisol as they are known from current literature. Even though the statistical analysis did not
result in significant findings, relationships between the psychological variables and the cortisol
rhythm could be identified. A huge part of the study population had to be excluded from the final
analysis due to a high prevalence of some type of disease. Further research could be dealing with
different types of diseases and their outcome in biological and psychological variables, as in this
work it could be seen that this factor has a considerable impact. Besides, future studies might
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help to reveal which psychological circumstances lead to cortisol profiles that were identified as
‘outliers’, e.g. an enhanced CAR that is nearly twice as high as normal.
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Table A.1: Stress variables assessed via STRAIN Index

Variables assessed via STRAIN Index
Physical Helath Complaints/Symptoms
Mental Health Complaints/Symptoms
Core and Transition to College Total Count of Stressors
Core and Transition to College Total Severity of Stressors
Core Total Count of Stressors
Core Total Severity of Stressors
Prenatal Total Count
Early Adversity Count of Acute Life Events
Early Adversity Severity of Acute Life Events
Adulthood Total Count
Adulthood Total Severity
Housing Total Count
Housing Total Severity
Education Total Count
Education Total Severity
Work Total Count
Work Total Severity
Treatment/Health Total Count
Treatment/Health Total Severity
Marital/Partner Total Count
Marital/Partner Total Severity
Reproduction Total Count
Reproduction Total Severity
Financial Total Count
Financial Total Severity
Legal/Crime Total Count
Legal/Crime Total Severity
Death Total Count
Death Total Severity
Life-Threatening Situations Total Count
Life-Threatening Situations Total Severity
Possessions Total Count
Possessions Total Severity
Interpersonal Loss Total Count
Interpersonal Loss Total Severity
Physical Danger Total Count
Physical Danger Total Severity
Humiliation Total Count
Humiliation Total Severity
Entrapment Total Count
Entrapment Total Severity
Role Change/Reversal Total Count
Role Change/Reversal Total Severity
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(a) For 2 clusters there are no negative values, the highest mean silhouette coefficient is
achieved

(b) For 3 clusters there are only a few samples with a negative coefficient, mean silhouette
score is nearly as good as for 2 clusters

(c) With 4 clusters, cluster nnumber one only contains very few values

Figure B.1: Silhouette plots for KMeans clustering with mean of features: AUCi

and Slope. Mean silhouette coefficient presented by the vertical dashed line.
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(a) 3 clusters, Features: AUCg, AUCi, class distribution [24/75/8]

(b) 3 clusters, Features: AUCCARg , Slope,AUCg, AUCi, class distribution [47/51/9]

(c) 2 clusters, Features: AUCCARi , Slope, class distribution [31/76]

(d) 4 clusters, Features: Slope, SlopeCAR class distribution [13/47/7/40]

Figure B.2: Clustering results of cortisol profiles with Kmeans, different number of
clusters and different combination of features, all computed for each day seperately.
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Figure B.3: Boxplot of variable StressCT for 3 clusters, the notch in the boxplot marks the
confidence interval (95%), the diamonds present outliers.

Figure B.4: Boxplot of variable EATotCT for 3 clusters, the notch in the boxplot marks the
confidence interval (95%), the diamonds present outliers. The values of the healthy group are
the highest for the completely flat curve (cluster 1).
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Figure B.5: Boxplot of variable EATotTH for 3 clusters, the notch in the boxplot marks the
confidence interval (95%), the diamonds present outliers. The values of the healthy group are
the highest for the completely flat curve (cluster 1).





Glossary

ACTH Adrenocorticotrophic Hormone

ANCOVA Analysis of Covariance

ANOVA Analysis of Variance

AUC Area Under the Receiver Operating Characteristics curve

AUC Area Under the Curve

CAR Cortisol Awakening Response

Cortisol is a steroid hormone and belongs to the class of glucocorticoides

CRF Corticotropin Releasing Factor

ECG Electrocardiogram

HPA Axis Hypothalamic-Pituitary-Adrenal Axis

IL-6 Interleukin-6

kNN K Nearest Neigbbor

MDD Major Depressive Disorder

ML Machine Learning

PTSD Posttraumatic Stress Disorder

SCN Suprachiasmatic Nuclei
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SES Socioeconomic Status

SNS Sympathetic Nervous System

SVMs Support Vector Machines

TSST Trier Social Stress Test
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