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Übersicht

Die kontinuierliche Überwachung der Herzinsuffizienz (HF) ist von entscheidender Bedeu-
tung, um eine Verschlechterung der Herzleistung frühzeitig zu erkennen. Smartwatches bieten
eine einfache und benutzerfreundliche Möglichkeit zur Erfassung von Gesundheitsdaten, ein-
schließlich eines Elektrokardiogramms (EKG).
Diese Arbeit untersucht den Einfluss von HF auf die Qualität eines Smartwatch-EKGs. Dabei
wurden EKG Aufzeichnungen von 18 gesunden und 8 Personen mit HF analysiert. Die
EKGs wurden mit der Apple Watch Serie 7 und der Withings Scanwatch aufgezeichnet.
Merkmale wurden aus den EKGs mit Hilfe von zwei verschiedenen automatischen EKG-
Segmentierungsalgorithmen (Neurokit und ECGdeli) extrahiert und mit Merkmalen eines
Referenz-EKG-Signal verglichen. Die Spearman-Korrelation wurde verwendet, um die
Beziehung zwischen den Parametern, der verschiedenen Geräte zu bestimmen. Herzfre-
quenz, QRS-Dauer und QT-Dauer zeigten eine hohe positive Korrelation (r > 0, 7) zwischen
Smartwatch und Referenzaufzeichnungen. Sie waren von der verwendeten Smartwatch und
dem Segmentierungsalgorithmus abhängig. Eine insgesamt geringe bis mäßige Korrela-
tion (Apple-Neurokit: r = 0.41, Apple-ECGdeli: r = 0.5, Withings-Neurokit: r = 0.40,
Withings-ECGdeli: r = 035) konnte bei der Zusammenfassung aller berechneten Merkmale
beobachtet werden. Ein Unterschied in der Gesamtkorrelation beim Vergleich von HF- und
gesunden Gruppen wurde nicht erfasst, was darauf hindeutet, dass HF keinen Einfluss auf
die Qualität der Smartwatch-EKGs hat. Insgesamt deuten die Ergebnisse darauf hin, dass
die niedrigen Korrelationen auf die Ungenauigkeit der EKG-Segmentierungsalgorithmen
zurückzuführen sind.
Außerdem wurden die aus den Smartwatches extrahierten Merkmale zwischen gesunden
und HF-Teilnehmern verglichen. Einzelne Merkmale erreichten eine statistische Signifikanz,
aber die Ergebnisse waren bei Verwendung unterschiedlicher Smartwatches oder Segmen-
tierungsalgorithmen nicht beständig. Dies deutet darauf hin, dass die Aussagekraft der
Ergebnisse gering ist.
Insgesamt hatten die Teilnehmer keine Probleme mit der Aufzeichnung von Smartwatch-EKGs
und zeigten eine hohe Bereitschaft, ihre Herzaktivität regelmäßig mit Smartwatch-EKGs zu
überwachen. Dies zeigt, dass Smartwatches ein großes Potenzial für den Einsatz in einem
Telemonitoring-System für HF-Patienten haben, wenn die durch die Segmentierungsalgorith-
men verursachten Einschränkungen gelöst werden können.
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Abstract

Continuous monitoring of heart failure (HF) is crucial to detect cardiac deterioration early
and provide good care for the patients. With the emerging trend of wearables, access to
biomedical parameters is becoming more available. Smartwatches provide a simple and user
friendly way for collecting health data, including an electrocardiogram (ECG).
This thesis aims at investigating the effect that HF has on the quality of a smartwatch ECG
recorded by the Apple Watch Series 7 and the Withings Scanwatch. In the context of this work,
smartwatch ECG recordings of 18 healthy people and 8 patients diagnosed with HF were
analyzed. Features were extracted from the ECG recordings with the help of two different
automatic ECG segmentation algorithms (Neurokit and ECGdeli). Features extracted from
the smartwatch ECGs were compared to features extracted from a simultaneously recorded
reference ECG signals. Spearman’s correlation was used to determine the relationship
between the features recorded by the different devices. Heart Rate, QRS duration and QT
duration showed a high positive correlation (r > 0.7) between smartwatch and reference
recordings. However, the strength of the correlation depended on the used smartwatch and
segmentation algorithm. An overall low to moderate correlation (Apple-Neurokit: r = 0.41,
Apple-ECGdeli: r = 0.5, Withings-Neurokit: r = 0.40, Withings-ECGdeli: r = 035) could
be observed when combining all calculated features. Differences in overall correlation when
comparing HF and healthy groups could not be observed, suggesting that HF has no impact
on the quality of the smartwatch ECGs. Overall the results suggest that the low correlations
are more likely caused by the inaccuracy of the ECG segmentation algorithms.
Furthermore, the features extracted from the smartwatches were compared between healthy
and HF participants. Individual features achieved a statistical significance, but the results
were not consistent when using different smartwatches or segmentation algorithms. This
suggests a low power of the results.
Overall the participants had no problems recording smartwatch ECGs and showed high
willingness to monitor their cardiac activity with smartwatch ECGs on a regular basis. This
shows that smartwatches have a great potential in being used in a telemonitoring system for
HF patients. In future work, limitations caused by the segmentation algorithms need to be
solved.
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Chapter 1

Introduction

Cardiovascular diseases were identified as the leading cause of death worldwide in 2019. In
the United States, heart failure (HF) accounts for 9.9 % of deaths associated with cardiovas-
cular disease [Tsa22]. HF is not a single pathological diagnosis, but a clinical syndrome. The
heart is not able to provide the body with a sufficient amount of blood and oxygen, causing
breathlessness, ankle swelling and fatigue [McD21]. While the estimated prevalence of HF
from 1998 and onwards seemed relatively stable [Rie16], it is projected to rise by 46 % in
adults from 2012 to 2030, estimating an increase from 2.4 % to 3.0 % in the total population
[Tsa22]. With prevalence rising, the estimated overall costs of HF are also projected to grow,
suggesting a total increase of 127 % from 30.7 billion to 69.8 billion US dollars in the US in
the same period [Tsa22].

A worsening of cardiac output with symptoms severe enough for the patients to require
immediate medical intervention is known as decompensated HF. Decompensated HF is
associated with high hospitalization, rehospitalization and mortality rates[McD21]. To detect
changes in the patient’s physical as well as mental state, regular monitoring is recommended
by national guidelines for current care of HF patients [Wis19]. If necessary, the patient’s
treatment can be adjusted accordingly. Additionally, more intensive monitoring can make it
easier to follow the recommended lifestyle and medication. While advances in technology
over the past decades make remote data collection for telemonitoring easy, the challenge lies
in integrating that data into systems of care that increase the patients’ experience of care.
Telemontitoring can be considered a remote clinical service, for which data collection can
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be done using simple telephone-calls, remote assessment by a nurse specialist, implanted
devices, standalone home-based systems as well as wearable technology including smart-
watches [Bra19].

With the emerging trend of wearables, especially smartwatches, access to biomedical pa-
rameters, such as heart rate and oxygen saturation, is becoming more available. Smartwatches
can provide meaningful patient-reported parameters, and are therefore useful tools. However,
they are not yet standardly integrated into telemonitoring systems for HF patients [Wer19].
Studies suggest that telemonitoring systems show beneficial outcomes when included in the
care of HF patients regarding overall mortality and hospitalization rates [Cle05] [Koe18].
As hospital admissions are a big cost factor for HF treatment, a reduced hospitalization rate,
brought forth by the use of telemonitoring systems, leads to the reduction of costs for overall
HF treatment [Syd21]. Parameters such as heart rate, heart rate variability, oxygen saturation,
and electrocardiograms (ECGs) are being investigated in different telemonitoring concepts
[Sen21]. Additionally, they can already be captured by modern smartwatches such as the
Apple Watch [App18]. The potential of self-recorded ECGs has previously been shown with
the identification of atrial fibrillation [Per19]. Besides detecting abnormal heart rhythm, other
valuable parameters, e.g. QRS duration, can be extracted from smartwatch-derived data. The
importance of a prolonged QRS complex for the prognosis of HF patients has already been
discussed extensively [Kas05]. Additionally, smartwatches are being analyzed for clinical
accuracy and it has been established that they can record the baseline intervals accurately
[Sag20].

However, the accuracy of smartwatches has not yet been established on HF patients, using
an automatic ECG signal segmentation algorithm. Furthermore, relevant parameters that can
be extracted from smartwatch data and are useful for detecting changes in the condition of
HF patients need to be established. No conclusive evidence is present, for whether including
smartwatches in telemonitoring systems for HF patients is justfied. Therefore, the goal of this
master thesis is to extend the knowledge of how different parameters, extracted and calculated
from commercial smartwatch data, can be used to monitor HF and detect decompensation
early. The thesis is structured as follows: Chapter 2 presents the basic fundamentals of ECG
recordings and the clinical syndrome HF. Related work in the field of diagnosing HF based
on ECG recordings, parameters indicating worsening HF and validating smartwatch ECGs
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is discussed in Chapter 3. In Chapter 4, the key methods and overall approach of this work,
including details on the study, feature extraction and analysis process are described. Results
of the data analysis are presented in Chapter 5. In Chapter 6 the overall results are discussed.
Finally, Chapter 7 concludes the thesis and provides an outlook for possible future research.





Chapter 2

Fundamentals

The heart’s purpose is to ensure the circulation of the blood in the human body. The heart
contracts rhythmically as synchronized electrical currents spread through the heart muscle.
According to our need for oxygen and nutrients, the heart adjusts its pumping rate leading to
faster or lower heart rates. Cardiovascular diseases can limit the heart’s functionality. The
following sections provide basic information about the contraction mechanism of the heart
and the electrical signal measured by the ECG associated with it. Additionally, information
about the cardiovascular disease heart failure is given.

2.1 The Electrocardiogram

2.1.1 Electrical Activity of the Heart

The human heart is made up of four chambers, that can be segregated into the left and the
right side. Each side has an atrium, one of the two upper chambers, and a ventricle, one of the
two lower chambers. The atria are responsible for collecting blood from the body, while the
ventricles are responsible for pumping blood into the body. The propagation of the signal for
the heartbeat starts in the right atria with the firing of the sinoatrial (SA) node. The SA node
functions as the heart’s pacemaker. The firing of the SA node causes the atria to contract
and pump blood into the ventricles. As the stimulus spreads through the atria, it reaches the
atrioventricular (AV) junction, connecting atria and ventricles. With the firing of the AV
node, the signal traverses the right and left bundle branches into the right and left ventricle,
which are separated by the interventricular septum. This causes the ventricles to contract and
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pump blood into the body. This automatically generated cardiac stimulus leads to a rhythmic
contractile activity [Gol17].

The described cardiac activation process is also known as the depolarization of the heart.
It is followed by the repolarization phase, representing the return of the heart muscle cells to
the resting state. This continuous and repeated depolarization and repolarization is the mech-
anism that makes the human heart beat [Gol17]. Figure 2.1 shows a schematic representation
of the heart as well as the signal propagation through it.

2.1.2 The ECG Signal

The electrical activity of the heart is measured by an ECG. A typical ECG recording, corre-
sponding to one contraction of the heart, can be seen in Figure 2.1. There are six basic wave
forms and segments recorded by the ECG. Each wave or deflection corresponds to a specific
cardiac electrical activity [Gol17]:

Figure 2.1: Signal propagation through the human heart and according ECG signal.

P wave: The P wave represents atrial depolarization. The SA node starts firing, indicating
the start of the beat. The electrical signals spread through atria and causes it to contract.

P-Q segment: The P-Q segments represents the time the signal travels from the SA node
to the AV node. This delay optimizes cardiac output, as it allows the ventricles to
completely fill with blood before they contract.
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QRS complex: The QRS complex shows the stimulation and depolarization of the ventricles
as the AV node starts firing. The initial deflection of the QRS complex is negative,
known as the Q wave. The Q wave corresponds to the depolarization of the interven-
tricular septum. This is followed by a positive deflection, the R wave. The R wave
represents the depolarization of the main mass of ventricles. The S wave is the final
negative deflection of the complex and the last phase of ventricular depolarization at the
base of the heart. However not every complex consists of all three waves or deflection
may change and therefore different nomenclatures exist.

ST segment: The ST segment is the earliest phase of ventricular repolarization. It is isoelec-
tric, meaning flat on the baseline, but can also be slightly elevated or depressed. It is
difficult to determine precisely when the ST segment ends and the T wave starts. For
clinical purposes an accuracy within 40 ms is usually acceptable.

T wave: The T wave is the mid-latter part of ventricular repolarization. The shape is slightly
asymmetrical, with the peak closer to the end of the wave.

U wave: The last phase of ventricular repolarization is represented by the U wave, which is
a small rounded deflection following the T wave. It usually has the deflection in the
same direction as the T wave, but is not always present in a normal ECG recording.

Atrial repolarization is not recorded by the ECG due to the low amplitudes of the corre-
sponding waves. The atrial repolarization occurs during the ventricular depolarization and
the signal is masked by the large QRS complex.

2.1.3 Leads

The common way to measure the cardiac electrical activity is through the 12 standard ECG
leads. They are comprised of connections and derivations. The leads record the differences
in potential between the electrodes on the body. The individual leads display different views
of the electrical activity, and therefore the form of the signal may differ for each lead. The
leads can be divided into six limb (extremity) leads (I, II, III, aVR, aVL, aVF) and six chest
(precordial) leads (V1 - V6). The limb leads can be further divided into three bipolar limb
leads (I, II, III) and three augmented unipolar limb leads (aVR, aVL, aVF). Those divisions
stem from their historic development by Einthoven and Goldberger [Gol17].
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2.1.4 Electrocardiogram in Smartwatches

While the standard 12-lead ECG gives insight from different views and is considered the gold
standard, it cannot be used for portable ECG devices. Many portable long-term ECGs consist
of only two leads. In 2018, Apple introduced the first smartwatch (Apple Watch Series 4)
with an integrated ECG measurement [App18]. The watch has two inbuild electrodes, one on
the back of the watch and one on the digital crown. The ECG can be recorded by wearing
the smartwatch on one arm while resting a finger from the other arm on the digital crown,
thereby creating a closed circuit. The lead that is measured by the smartwatch corresponds to
lead I of the standard 12-lead ECG. Lead I records the difference in voltage between the left
arm and right arm electrodes as shown in Figure 2.2. Based on the ECG recording, the apple
algorithm can detect heart rhythms such as the normal sinus rhythm as well as abnormal
rhythms such as tachycardia, bradycardia and atrial fibrillation. Apple got the CE certification
and FDA approval for the ECG App as well as for the irregular rhythm notification feature,
making the software a medical product. The ECG App is cleared for users older than 22
years, while the irregular rhythm notification feature is cleared for users 22 years and older
with no prior history of atrial fibrillation [App22].

Figure 2.2: Smartwatch ECG. By placing a
finger on the second electrode on the watch,
lead I can be recorded.

Lead I can now also be recorded by other smartwatches, including among others, the
smartwatches by Withings [Wit19]. The working principle is similar to the one of the Apple
Watch with a need for a closed circuit between the arms due to the watch’s integrated electrodes.
The Withings Scanwatch has electrodes build into the main body of the watch, while another
one is integrated in the the steel upper ring, the bezel, of the watch. When wearing the watch
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(a) (b)

Figure 2.3: Smartwatch with ECG functions. (a) Apple Watch
Series 4 [App18] (b) Withings Scanwatch [Wit22a]

and then touching both sides of the bezel, an ECG recording can be obtained. The Scanwatch
has received CE medical certification in Europe and FDA clearance in the United States
[Wit22b]. Other smartwatches, which are able to record an ECG and are certified for use in
Europe include watches by Samsung [Sam21] and Fitbit [Fit20].

2.2 Heart Failure

2.2.1 Diagnosis

Heart failure is one of the leading causes of death worldwide [Tsa22]. It is caused by structural
or functional abnormalities of the heart. The heart is therefore unable to pump a sufficient
amount of blood through the body. Myocardial dysfunction is the most common cause,
but other causes such as pathology of the valves or abnormalities of heart rhythm can be
contributors. The first signs of HF are the onset of symptoms, such as shortness of breath,
swelling of feet, ankles, and legs as well as overall tiredness [McD21].

Early detection is essential to treat HF and reduce mortality rates successfully. To confirm
the presence of HF, investigative tests are performed. An ECG measurement is a simple
non-invasive and non-expensive approach. It is a recommended diagnostic test in all patients
with suspected chronic heart failure [McD21]. The ECG is used to identify rhtythm (to verify
atrial fibrillation (AF)), left ventricular (LV) hypertrophy, P wave duration and morphology
or fibrillatory waves, preexcitation, bundle-branch block, prior myocardial infarction, other
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atrial arrhythmias, and to measure and follow the R-R, QRS, and QT intervals [Yan13]. A
normal ECG recording makes the diagnosis of HF unlikely, and abnormal findings increase the
likelihood of a HF diagnosis. However, the changes in an ECG are non-specific and insensitive
for diagnosis of HF. To confirm the presence of HF, the concentration of natriuretic peptides
is measured and echocardiography is carried out [McD21].

2.2.2 Types

As the heart can be segregated into the left and the right side, HF can present as left-sided
failure or right-sided failure. Right-sided HF is less common and often occurs as a result of
left-sided failure. Left-sided HF occurs when the left ventricle does not pump efficiently. It is
typically categorized based on measurements of the left ventricular ejection fraction (LVEF).
A LVEF smaller than 40% is called heart failure with reduced ejection fraction (HFrEF),
also called systolic failure. This means, the left ventricle loses the ability to contract nor-
mally. A LVEF between 41 and 49% is known as heart failure with mildly reduced ejection
fraction. If the LVEF is above 50%, it is classified as heart failure with preserved ejection
fraction (HFpEF), also known as diastolic failure. This is caused by the left ventricle not being
able to relax normally. Those distinctions are important as treatments differ [McD21] [Yan13].

Additionally, symptoms of HF can present gradually or suddenly. If the symptoms are
severe enough to require immediate medical attention, HF is said to be acute. Acute heart
failure (AHF) can be of acute nature, without previous HF diagnosis as well as an acute
worsening of previously diagnosed HF. Differentiating those types is of importance as
treatments and different mortality rates are associated with them [McD21]. Possible causes
for AHF are cardiac causes including among other things ischemia, myocardial infarction,
arrhythmia and myocarditis. Comorbidities, patient behavior and drug and therapy effects can
also play a part in the development of AHF. Relevant comorbidities include infections, renal
insufficiency, anemia, pulmonary embolism and thyroid dysfunction while patient behavior
can be understood as compliance towards medical therapy and substance misuse. At times
the cause of AHF cannot be identified [Wis19].

Acute decompensated heart failure (ADHF) occurs in patients preciously diagnosed with
HF and history of cardiac dysfunction of LVEF and therefore often comes with a more gradual
onset of symptoms. With 50 - 70% of all AHF presentations being classified as ADHF, it
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is the most common type. The main cause of symptoms is progressive fluid accumulation,
responsible for systemic congestion. Patients may also present symptoms and clinical signs
of hypoperfusion. Other types of AHF inlcude acute pulmonary oedema, isolated right
ventricular failure and cardiogenic shock [McD21].

2.2.3 Classification

Based on the severity of HF, the patients can be categorized by the New York Heart Associa-
tion (NYHA) functional classification [Com94]. The NYHA classes are focused on severity
of symptoms and limitations during physical activity. Patients are placed into one of four
classes, according to their exercise capacity. It is a subjective assessment by the doctor and
can also change over short periods of time.

Table 2.1: New York Heart Association (NYHA) Functional Classification [Com94]

Class Symptoms

I No limitation of physical activity. Ordinary physical activity does not cause symptoms.

II Slight limitations of physical activity. Comfortable at rest. Ordinary physical activity results in symptoms.

III Marked limitations of physical activity. Comfortable at rest. Less than ordinary activity causes symptoms.

IV Unable to carry out any physical activity without discomfort. Symptoms of heart failure at rest.





Chapter 3

Related Work

3.1 ECG in identifying Heart Failure

ECGs are a recommended diagnostic test in patients with suspected HF [McD21]. However,
studies have shown that ECGs have insufficient specificity in being an alone diagnosis, when
evaluated by general practitioners or cardiologists [Dav06] [Gou07]. In recent years, different
computer-aided diagnosis systems using ECG signals for classification of HF have therefore
been proposed. The contributions are mostly based on time-domain, frequency-domain and
non-linear features extracted from the signals and supported by machine learning algorithms.

Time domain methods and the nonlinear Pointcare plot method were used for heart rate
variability (HRV) feature extraction by Khaled et al. [Kha06]. Additionally, they evaluated
four different classification approaches for diagnosing congestive heart failure (CHF). Best
results were obtained using voting k-Nearest Neighbor Classifier and Back propagation Neural
Networks with normalized time domain HRV features as inputs. Sensitivity reached up to
97.90% and positive predictive accuracy was more than 98%.

Wang et al. [Wan18] compared different time-domain, frequency-domain and non-linear
features of HRV for distinguishing the heart rhythm of HF patients with sinus rhythm of
healthy subjects. They showed that all frequency-domain, nonlinear indices, and the time-
domain index standard deviation of the NN interval (SDNN), had differentiating power for
CHF patients and normal sinus rhythm subjects. Using a support-vector machine based
classification algorithm, they achieved sensitivity of 91.31%, specificity of 90.04% and
accuracy of 90.95%.
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Bhurane et al. [Bhu19] used nonlinear features extracted from wavelet coefficients of
frequency-localized filter bank for diagnosis of CHF. For automated classification of ECG
signals from healthy people and HF patients, Support Vector Machine was employed. The
approach was tested on four different datasets and obtained an accuracy ≥ 99.66%, sensitivity
≥ 99.82%, and specificity ≥ 99.28% across all datasets.

The results of the studies show that ECG signals have great potential in differentiating
healthy subjects from HF patients. Using such systems to facilitate the diagnosis of CHF in
hospitals can reduce the time requirement and error rate associated with manual reading of
large ECG signals [Bhu19].

The invention of wearable devices to measure ECGs plays an important role in extend-
ing the possibilities of HF diagnosis and monitoring through ECG signals. The patent
US20160249858A1 (A.1) from 2016 describes a wearable sensor to characterize patients
with HF. It used an ECG sensor to measure electrical cardiac activity and an impedance
system to measure the stroke volume and cardiac output. Another example of an invention
for wearable ECG systems is the patent US20160360986A1 (A.2). It also includes sensors to
extract an ECG by wearing the device on a limb such as the wrist. The ’active two hand ECG’
that can be measured works similarly to the working principle of the smartwatch ECGs.

3.2 Parameters indicating Decompensated Heart Failure

While research on diagnosing HF based on a ECG recording shows great potential, it is
also being explored how different ECG parameters can give information about the state of
a patient. Based on the information provided by duration, delay, presence or absence and
morphology of the individual segments, abnormalities can be noticed. The worsening of
a patient’s state can then be identified and predicted according to those abnormalities and
changes. The following sections give an overview of which parameters have prognostic value
in foreseeing a decompensation in heart failure patients.
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Table 3.1: Parameters, extractable from an ECG, identifying and predicting decompensation
in heart failure patients.

Parameter Description Source

Heart Rate Recovery Rate at which the heart recovers from exercise [Are06] [Cah13]

Heart Rate Reserve Difference between HR at peak exercise and at rest [Ben13]

Heart Rate Turbulance Behavior of HR after a premature ventricular contraction [Moo06] [Cyg06]
[Cyg08b] [Dis16]

Heart Rate Variability

(1) SDNN

(2) SDANN

(3) Total Power

(4) LF Power

(5) Ultra LF Power

Variation in the time interval between heart beats

(1) Standard deviation of all normal-to-normal RR intervals

(2) Standard deviation of all 5-minute mean RR intervals

(3) Sum of the energy in all frequency bands

(4) Absolute power of the low-frequency band (0.04-0.15 Hz)

(5) Absolute power of the ultra-low frequency band (≤0.003 Hz)

[Nol98] [Gal00]
[La 03] [Aro04]

Heart Rate Number of time the heart beats within a specified time period [Ho10] [For15]
[Zaf18]

T Wave Alternans Beat-to-beat variation in the amplitude of the ST segment and
T wave

[Ste08] [Mon12]
[Yam18] [Ars18]

T Wave Morphology

(1) Lead Dispersion

(2) TCRT

(3) Morphology Restitution

(4) Asymmetry

(5) Notch

(6) Flatness

Morphology of T Wave

(1) Temporal variations in leads for a 3D vector T-loop

(2) Total cosine between QRS and T wave

(3) Morphological variation of the T wave per RR increment

(4) Shift of peak of T wave to left or right

(5) Presence of notches, bulges or humps on the T wave

(6) Sharpness or flatness of the T Wave

[Lin09] [Hua09]
[Ram17] [Isa21]

QRS Duration Time from beginning of the Q wave to end of the S wave [Kal02] [Kas05]
[Wan08] [Rav19]

QT Dynamicity

(1) QT Duration

(2) QTc Duration

(3) QT/RR slope

Variations in the QT segment

(1) Time from beginning of the Q wave to the end of the T wave

(2) QT Duration corrected for HR

(3) Slope of QT/RR plots of the linear regression

[Pat05] [Wat07]
[Cyg08b] [Ram14]

[Ars22]



16 CHAPTER 3. RELATED WORK

Heart Rate and Rhythm

Ho et al. [Ho10] showed that heart rate (HR) ≥ 70 beats per minute (bpm) is an independent
predictor of all-cause mortality and HF hospitalization in a study with 9580 patients. Addi-
tionally, their findings showed that for every 10 bpm increase in HR at rest, the risk of major
cardiovascular event increased by 8%. Ford et al. [For15] also used a threshold of 70 bpm.
Like Ho et al., they associated every 10 bpm increase with a worsening in outcome. Every
10 bpm increase in resting HR was linked to a 31% increase in cardiovascular mortality or
HF hospitalization, a 26% increase in all-cause mortality, a 27% increase in cardiovascular
mortality, and a 32% increase in HF hospitalization. Not only tachycardia but also other
heart rhythm abnormalities can be prognostic for cardiac decompensation. In a large study
including 14946 patients, Zafrir et al. [Zaf18] independently associated AF with either HF
hospitalization or hospitalization combined with mortality in HF patients.

Heart Rate Recovery and Heart Rate Reserve

HR Recovery describes the rate at which the heart recovers from exercise. Arena et al. [Are06]
showed that HR Recovery < 6.5 bpm was predictive of death or hospitalization in a one
year follow up. Their study included 87 patients with compensated HF. HR Recovery was
calculated as the difference of the maximal HR during cardiopulmonary exercise testing
and the heart rate at one minute after exercise. Similar findings were made by Cahalin et al.
[Cah13], who showed that HR Recovery in the six-minute walking test is a strong predictor
of major cardiac events, such as death or transplants in HFpEF and HFrEF patients. 258
patients were included in the study with a mean follow up of 22.8 months. HR Reserve was
analyzed by Benes et al. [Ben13]. HR reserve was calculated as the difference between HR
at peak exercise and at rest. Additionally, it was divided by the difference of age predicted
maximal and resting HRs. In a group of 81 stable but advanced HF patients, they showed
how impaired heart rate reserve (cut-off value of 0.38) was predictive of adverse outcomes.
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Heart Rate Turbulence

Heart rate turbulence (HRT) describes the behavior of the HR after a premature ventricular
contraction.

Moore et al. [Moo06] investigated the importance of HRT in CHF patients of NYHA
classes II and III. The analysis included 358 patients with a follow up of five years. The data
was recorded with a 24h Holter ECG. Moore et al. found that turbulence slope was as an
independent predictor of death due to decompensated HF. The prognostic value of HRT was
also analyzed by Cygankiewicz et al. [Cyg06]. 487 CHF patients of NYHA classes II and
III were included in the study population. Abnormal turbulence onset and turbulence slope
were evaluated and found to be independent predictor of NYHA class III or a LVEF < 40%.
In an additional study, Cygankiewicz et al. [Cyg08b] found that abnormal turbulence slope
(≤ 2.5ms/RR) and abnormal turbulence onset as well as abnormal turbulence slope were
predictive for total mortality, sudden death and heart failure death. The study included 607
patients with a median follow up of 44 months. For both studies by Cygankiewicz et al. the
data was recorded with a 24h, 3-lead Holter ECG. A more complete review and meta-analysis
on the importance of HRT was performed by Disertori et al. [Dis16] in 2016. The authors
showed that information gained by evaluating HRT are important in predicting total mortality,
cardiac death and arrhythmic events in HF populations.

Heart Rate Variability

The prognostic value of HRV is well established. Nolan et al. [Nol98] associated SDNN, the
standard deviation of all normal-to-normal RR intervals in the entire 24h recording, < 100

ms with higher all-cause mortality in HF patients. Additionally, SDNN was found to be an
independent predictor of death due to progressive HF. The data was extracted from 24h
ambulatory ECGs of 433 patients. Similar findings were made by Galinier et al. [Gal00].
They found a decreased SDNN to be an independent prognostic value for all-cause death
and death due to progressive heart failure. Additionally, they showed the predictive value
of lower daytime low frequency (LF) power for sudden death. Short term HRV (8-minutes)
was analyzed by La Rovere et al. [La 03]. The authors showed that reduced low frequency
power (< 13 ms2) independently predicts sudden death in 444 CHF patients with a follow up
of three years. Aronson et al. [Aro04] evaluated the 24h, 3-lead ECG data of 199 patients
with decompensated HF and found higher mortality rates for patients with SDNN < 44 ms



18 CHAPTER 3. RELATED WORK

and standard deviation of all 5-minute mean RR intervals (SDANN) < 37 ms. Patients with
total power < 1.475 ms2 and ultra-low frequency power < 1.100 ms2 were at increased risk
of death.

Oxygen Saturation

Weatherley et al. [Wea09] investigated the state of 337 patients, hospitalized for acute HF.
They followed the patients for a mean of six months. Weatherley et al. associated early
worsening of HF with lower oxygen saturation at admission. Masip et al. [Mas12] evaluated
oxygen saturation for discriminating between patients with acute myocardial infarction with
and without acute HF. 192 patients were included in the study with a mean follow up of 13
months. Masip et al. suggested that a baseline oxygen saturation lower than 93% may be
considered a signal of acute HF. Gálvez-Barrón et al. [Gál19] explored the effect of oxygen
saturation on HF patients in stable and exacerbation state. First measurements were taken at
the hospital admission of the patients. The measurements in stable phase were measured a
minimum of 30 days after discharge if the patient was in stable condition. The measurements
were preformed in rest and during walking. The authors showed, that there was a significant
difference between stable and exacerbation phase for oxygen saturation. Additionally, they
concluded that effort situations may help improve the discriminatory power.

T Wave Alternans

T wave alternanss (TWAs) describe a beat-to-beat variation in the amplitude of the ST segment
and T wave and therefore, reflect abnormalities in ventricular repolarization.

Based on the Holter ECG recordings of 493 hospitalized post-myocardial infarction
patients with heart failure and/or diabetes with LV dysfunction, Stein et al. [Ste08] reported
higher TWA to be a powerful predictor of sudden cardiac death with a stratification of > 47µV.
Monasterio et al. [Mon12] showed, that TWA predicts total mortality, cardiac death and
sudden cardiac death. In the study by Yamada et al. [Yam18] TWA were found to be predictive
of cardiac events at one year, in patients with HF. The authors calculated the data based on
a 24h Holter ECG. Arsensos et al. [Ars18] investigated the predictive value of TWA for
shorter recordings of 30 minutes in 146 HF patients. He found TWA to be an independent
total mortality predictor. While the studies link higher TWA values to higher cardiac events or
mortality, the cut-off value for stratification ranges from 42µV [Ars18] to 58.5µV [Yam18].
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T Wave Morphology

Lin et al. [Lin09] evaluated different T-wave morphology parameters in heart failure patients
with and without life-threatening ventricular arrhythmias. By evaluating a standard 12-
lead ECG, they found a significantly higher lead dispersion in the patients with ventricular
arrhythmias than in the patients without. Huang et al. [Hua09] looked at a standard 12-lead
ECG of 650 systolic heart failure patients with a follow up period of around 2.7 years. They
found total cosine between QRS and T-wave (TCRT) as a cardiovascular mortality predictor
for a cut-off point of −0.473. Ramirez et al. [Ram17] analyzed 24h, 3-lead ECG data of 651
HF patients recruited by the MUSIC trial. They found T-wave morphology restitution (TMR)
> 0.040 to be predictive of sudden cardiac death. In the study by Isaksen et al. [Isa21] a
morphology combination score (MCS) based on asymmetry, notch and flatness of the T-wave,
was calculated from a 10 second 12-lead ECG in 270039 patients. The patient group in the
study included HF patients but was not limited to that group. The authors found MSC, as
well as the three morphology components, predictive of mortality independent of HR, QTc
and baseline comorbidities.

QRS Duration

In a review by Kashani et al. [Kas05] it was assessed, that patients with a prolonged QRS
complex are considered to have a poorer prognosis of outcome. They established that as the
LV function worsens, QRS duration increases. Kalra et al. [Kal02] showed in a study that
included 155 CHF patients, that HF patients with QRS duration < 120 ms have significantly
better prognosis for medium and long-term even-free survival. Wang et al. [Wan08] showed
that for patients with reduced LVEF , who were hospitalized for worsening HF and showed a
prolonged QRS duration (> 120 ms) had a higher post discharge mortality and readmission
rate. Their study included 2962 patients with reduced LVEF and hospitalized for worsening
HF. Rav-Acha et al. [Rav19] found a QRS prolongation > 130 ms to be significantly and
independently associated with mortality and hospitalization in HF patients with left ventricular
dysfunction and thereby supporting the previous findings.
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QT dynamicity

Pathak et al. [Pat05] analyzed the QT dynamicity in 175 CHF patients of NYHA classes II –
III. The mean follow up was 29.9 months and data were recorded with a 24h Holter ECG.
The authors calculated the interval of the onset of Q wave to the apex of the T wave (QTa)
and the interval of the onset of Q wave to the end of the T wave (QTe). They found the
24h QTe/RR slope > 0.28 predictive for total mortality and sudden death. Watanabe et
al. [Wat07] included 121 CHF patients in their study with a mean follow up of 34 months.
Additionally, to a steeper QT/RR slope, they also found a longer QT interval to be predictive
of cardiac and sudden death. The importance of QTe/RR slope was also suggested by results
from Cygankiewicz et al. [Cyg08a] and Ramirez et al. [Ram14]. Evaluating the data of 542
patients over a median period of 44 months, Cygankiewicz et al. found daytime QTe/RR
slope > 0.22 to be a predictor for increased total and cardiac mortality. Ramirez et al. results
support the findings by again showing the predictive value of an increased QTe/RR slope
for cardiac as well as sudden death. A recent study by Arsenos et al. [Ars22] showed the
prognostic value of the corrected QT interval (QTc) when extracted from a 30 min ECG. In
145 patients with a mean follow up of 42.1 months, QTc interval was an independent predictor
of total mortality in patients with heart failure.

3.3 Validation of Smartwatch ECG Recordings

With the emerging trend of wearables, especially smartwatches, access to biomedical param-
eters, such as heart rate and oxygen saturation, is becoming more available. Smartwatches
can provide meaningful patient-reported parameters, and are therefore useful tools. The
integration of ECG measurement systems in commercial smartwatches, plays a major factor
in self-monitoring of the heart. The potential of self-recorded ECGs has previously been
shown with the identification of atrial fibrillation [Per19]. However, before ECGs can be used
for clinical purposes, their clinical accuracy has to be determined.

The Apple Watch Series 4 was evaluated for clinical accuracy for healthy people with
no known cardiac history by Saghir et al. [Sag20]. The smartwatch and 12-lead reference
ECG were recorded consecutively to avoid interferences. The measurements were typically
recorded less than 60 seconds apart. HR, RR interval, PR interval, QRS interval, QT interval
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and QTc interval were analyzed and strong (mean difference < 20 ms) and moderate (mean
difference < 40 ms) agreement was found. Overall, the authors concluded that the Apple
Watch produces an accurate 1-lead ECG in healthy adults.

While smartwatches typically record Einthoven’s first lead, attempts of recording other
limb leads as well as precordial leads have been made. Behzadi et al. [Beh20] recorded,
Einthoven’s first, second and third lead with the Apple Watch Series 4 by placing the smart-
watch on additional places of the body. Interval durations, amplitudes and polarity of the
waves were evaluated. The 12-lead reference ECG and Apple Watch ECG were recorded
consecutively. Strong correlation between the ECG recordings of Apple Watch and reference
system were obtained for all of the examined segments in all three leads. Sprenger et al.
[Spr22] analyzed the amplitude and duration of QRS complex, T wave, P wave, PR interval
and QT interval in precordial leads V1 through V6. Strong and significant correlations
were observed for amplitudes, duration and polarities. The research group showed that the
precordial leads could be obtained from smartwatches with similar reliability to a standard
ECG in people with sinus rhythm.

The previously mentioned studies evaluated the feasibility and reliability of smartwatch
ECGs on healthy individuals above the age of 18. However, studies that explore different
populations than healthy adults, have been reported. Spaccarotella et al. [Spa21] analyzed
the QT and QTc interval in healthy individuals as well as patients with the diagnosis of acute
coronary syndrome and patients with ST-elevation myocardial infarction in three leads. All
participants were in sinus rhythm and the ECG tracings were recorded simultaneously. The
authors assert that the Apple Watch Series 4 can accurately measure the QT interval in both
the healthy and patient group. Kobel et at. [Kob22] conducted a study for evaluating the
accuracy of the Apple Watch in children with and without congenital heart disease. PR
duration, QRS duration, QT duration, QRS amplitude, and T wave amplitude, extracted from
the smartwatch ECG, showed excellent correlation with the reference system.

While the majority of studies investigate the reliability and accuracy of the the Apple
Watch, the Withings Scanwatch has also been evaluated in two recent studies [Man22] [Pen22].
The Withings algorithm can not only detect AF but also gives information about the ECG
intervals in recordings with good quality. However, Mannhart et al. [Man22] concluded
that the automatic algorithm for identifying intervals needs further improvement to be useful
in for clinical applications. Pengel et al. [Pen22] manually evaluated the ECG intervals
and showed that the QTc interval was often underestimated and only acceptable in 51% of



22 CHAPTER 3. RELATED WORK

the participants. While PR interval and QRS duration had a strong correlation (r = 0.84

and r = 0.83 respectively) for high quality ECG recordings, the QRS complex was still
underestimated on average.

Besides the study by Mannhart et al. [Man22], all studies investigated the accuracy of
smartwatch ECGs by manually analyzing the signals. Therefore, the idea of smartwatch
ECGs being used for automatic analysis has not been discussed. Furthermore, to the best of
our knowledge, no literature evaluating the accuracy of smartwatch ECG tracings recorded
on HF patients exists.

3.4 Research Goals

The goal of this master thesis is to extend the knowledge on how different parameters, extracted
and calculated from commercial smartwatch data, can be used to monitor HF and detect
decompensation early. Therefore, it is necessary to identify ECG parameters, that can predict
a cardiac decompensation and can be recorded with commercial smartwatches. Additionally,
the validity of the specified parameters needs to be assessed on heart failure patients. For this
purpose, a study was conducted with the aim to assess the feasibility and reliability of 1-lead
ECG recordings from smartwatch devices. Furthermore, the significance of the extracted
ECG parameters has to be established. Those tasks make up the research goals of this thesis.
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Methods

4.1 Data Acquisition

To assess the accuracy and reliability of smartwatch ECG recordings for HF patients a study
was conducted at the Machine Learning and Data Analytics Lab from August to October
2022. Participants were asked to obtain ECG recordings with two different smartwatches in a
resting phase as well as in a recovery phase. This study was approved by the ethics committee
of the Friedrich-Alexander-Universität (application number: 22-237-S) and complies with
the declaration of Helsinki.

4.1.1 Study Population

In total, 26 participants (18 healthy and 8 HF patients) were recruited for the study. The mean
age of the healthy participants was 55.9 years. 11 healthy participants were female. The mean
age of the HF group was 68.9 years and four HF participants were female. Demographic data
for all participants can be found in Table 4.1. The most common comborbidity of the HF
participants was AF. Additionally, seven HF participants were previously hospitalized for
AHF. An overview of comorbidities of the HF patients is shown in Table 4.2.

Healthy participants were recruited using electronic flyers, which were distributed via an
online platform promoting neighborhood assistance. Additionally, some participants were per-
sonally invited to participate in the study. HF patients were mostly recruited by ProCarement
GmbH, a company which develops a telemonitoring system for HF patients and a cooperation
partner of this project. To check the participants eligibility for the study, participants were
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informed about the exclusion criteria in advance. Exclusion criteria included an age below
22, electrical implants, poor skin integrity, pregnant, and breastfeeding women. Furthermore,
healthy participants should have no prior diagnosed heart diseases. HF patients should have a
HF diagnosis. Additionally, all participants had to give signed consent and had to be able
to participate in all phases of the study. A compensation for participation was not provided.
Participants had the right to terminate their participation in the study at any given point of
time, causing them no disadvantages.

Table 4.1: Demographics of healthy
and heart failure (HF) participants.

Demographics of enrolled participants (n = 26)

Healthy (n = 18) HF (n = 8)

Age 55.9 ±19.7 68.9 ±9.5

BMI 23.7 ±2.4 26.6 ±4.2

Female 11 (61.1%) 4 (50%)

Smoker 0 (0%) 0 (0%)

Smartwatch Users 3 (16.7%) 5 (62.5%)

NYHA I

NYHA II
-

2 (25%)

6 (75%)

Table 4.2: Comorbidities of heart
failure (HF) patients.

Baseline Characteristics of HF Patients

Acute Heart Failure 7 (87.5%)

Atrial Fibrillation 7 (87.5%)

Coronary Heart Disease 2 (25%)

Chronic Obstructive Pulmonary Disease 1 (12.5%)

Diabetes Mellitus 2 (25%)

Heart Valve Defect 5 (62.5%)

High Blood Pressure 4 (50%)

Kidney Failure 1 (12.5%)

Sleep Apnea 2 (25%)

4.1.2 Study Components

ECG Recordings

Smartwatch ECG measurements were conducted using the Apple Watch Series 7 and the
Withings Scanwatch. The Apple Watch recorded the ECG with a sampling rate of 512 Hz.
The Scanwatch recorded the ECG with a sampling rate of 300 Hz. The smartwatches recorded
Einthoven’s lead I of a 12-lead ECG for 30 seconds. Information about how the signals
were filter by an internal algorithm is not provided by Apple or Withings. The recordings
were saved in the Apple Health App and in the Withings Health Mate App, respectively. A
reference ECG signal was recorded with the NeXus Mind Media and the according BioTrace+
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Figure 4.1: ECG recording setup. A participant wearing the Apple Watch (left wrist) and
Withings Scanwatch (right wrist). The electrodes of the reference ECG are connected just
below the collarbone.

software [Min22]. The signal was sampled at 2048 Hz, the highest sampling rate allowed
by the software. Five electrodes were attached to the participant’s upper body, to record
Einthoven’s first and second lead. To achieve simultaneous recordings, the reference ECG
was recorded throughout the entire study sessions. For synchronization of signals, markers
were set at specific time steps (start smartwatch ECG1, end smartwatch ECG1, ...).

Oxygen Saturation

Oxygen saturation was measured using both smartwatches. The score was determined with
the internal algorithm of the corresponding watch. The Apple Watch computes the oxygen
saturation based on a 15 second recording, while the Withings Scanwatch measures for 30
seconds. The value was shown on the watch’s display immediately after the measurement
concluded and was noted by the study supervisor. If the measurement failed, it was repeated no
more than two times. If the measurement still failed on the third try, no value was noted and the
study would move on. A reference oxygen saturation measurement was not performed. While
the Withings Scanwatch uses a medical-grade SpO2 sensor, the blood oxygen measurements
of the Apple Watch are not intended for medical use.
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Six-Minute Walking Test

The six-minute walking test (6MWT) is an exercise test, that was first used to evaluate patients
with chronic obstructive pulmonary disease and respiratory failure. In 1985, Guyatt et al.
[Guy85] published the first study on the use of the 6MWT for chronic heart failure patients.
Since then, it has been widely investigated in populations with HF [Gia19]. A statement by
the American Thoracic Society on the guidelines for the 6MWT was made in 2002 [Cra02].
Those guidelines support the use of the 6MWT for the comparison of pretreatment and
posttreatment, evaluation of functional status, and prediction of morbidity and mortality in not
only subjects with respiratory diseases but also those with HF. It is considered a sub-maximal
exercise test, that reflects the functional exercise level for daily physical activities.

The standardized approach is based on the statement by the America Thoracis Society
[Cra02]. The object of the test is to walk as far as possible for six minutes without running or
jogging. The test should be performed on a corridor of at least 30 meters. The patients are
permitted to determine their own pace and slow down or stop at any given time. They are
asked to resume walking as soon as they are able again. During the breaks the patients may
lean against a wall. The test conductor should give words of encouragement on a minutely
basis. After six minutes the test ends and the distance covered is measured.

In this study, participants were asked to walk on a round course of around 25 meters, due
to the lack of a long corridor. They were allowed to chance direction at any given time. While
the distance was noted, the main reason for including the 6MWT in the study protocol, was to
include an exercise phase that activates the heart and reflects daily physical activities. HR was
monitored during the 6MWT with all three recording devices. To get a more continuous HR
measurement with the smartwatches, a workout mode was activated and HR was monitored
via photoplethysmography. During workout mode, the Apple Watch sampled the HR with
approximately 12 values per minute, while the Scanwatch sampled the HR with around 14
values per minute. The reference system recorded an ECG throughout the 6MWT.
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4.1.3 Procedure

To ensure repeatability, a study protocol was designed. The study included a resting, an exer-
cise and a recovery phase in which smartwatch ECG recordings were obtained. A graphical
representation of the study procedure is shown in Figure 4.2.

Figure 4.2: Schematic representation of the study procedure. The study included a resting,
an exercise and a recovery phase.

After their arrival at the Machine Learning and Data Analytics Lab at the Friedrich-
Alexander-University, the potential participants were welcomed, seated and asked to sign
a declaration of consent. The study supervisor shortly explained the purpose and timeline
of the study. The participants were introduced to the devices used for the measurements
(Apple Watch Series 7, Withings Scanwatch and Nexus Mind Media). Once the participants
were well informed, they were asked to attach both smartwatches to their wrists (left wrist:
Apple Watch, right wrist: Withings Scanwatch). Specific skin regions were disinfected and
prepared with special medical tape to ensure good electrode connection, before the electrodes
for the reference system were attached to the participant’s upper body. The reference ECG
was recorded throughout the entire study session.
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Participants were asked to relax for five minutes to ensure the body would be in a complete
resting state. They were asked to not talk, not play on their phone or engage in any other
distractions. Additionally, they were encouraged to close their eyes.

The first ECG was recorded with the Apple Watch. Immediately after, a second ECG
tracing was obtained using the Scanwatch. Then, blood saturation was measured using Apple
Watch and Scanwatch, respectively. Participants were then told to perform the 6MWT. The
Nexus device for the reference ECG was fastened on the participant with a belt, so heart
rate monitoring during the active session could be ensured. The workout ‘Walking’ was
set on both watches. During the 6MWT, the study supervisor counted each lap and gave
information about how much time was left and how much distance was covered. After six
minutes, the study participants were asked to stop walking and stand where they had stopped.
The distance was noted and workout session modes on the smartwatches were ended and
saved. Participants were asked to remove the belt and sit down again. After 1.5 to 2 minutes,
an ECG recording was obtained with the smartwatches. The order of the recordings obtained
with Apple Watch and Withings Scanwatch alternated for each participant to ensure, that
on average each ECG recording was acquired after the same amount of time had passed
between recordings and walk. The same was done for the blood saturation measurements. All
ECG and oxygen saturation measurements throughout the study followed the same recording
protocol.

After the measurement the smartwatches were returned to the study supervisor and the
electrodes were removed. The participants were asked to fill out a short online questionnaire,
containing questions about demographics and smartwatch preferences. HF patients were
additionally asked about their comorbidities and HF diagnosis. This included questions
regarding time of first diagnosis, decompensations and symptoms. The study ended after
completing the questionnaire. Participants were thanked for their participation.
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4.2 Data Preprocessing

The smartwatch ECG signals were exported from the Apple Health App and the Withings
Health Mate App and then manually saved in individual .csv files. The ECG signals recorded
by all devices, including the reference system, were cleaned using a 0.5 Hz high-pass butter-
worth filter of order 5. This was followed by powerline filtering. The cleaned signal was used
for the rest of the analysis.

The wave on-, offsets and peaks for the P, R and T waves were detected for each heartbeat
of the ECG signal. In case the position of an on-, offsets, or peaks could not be determined,
the value NaN was put down instead.

An outlier detection was performed for all wave onsets, peaks and offsets. This was done
on three levels, as a statistical, a logical and a physiological outlier detection was conducted.
The statistical outlier detection is based on the z score. The mean and standard deviation of
the time difference from onsets, peaks and offsets to the R peak of the according heartbeat,
was calculated. An outlier was detected if the z score was above a certain threshold. The
threshold was set to 1.69, corresponding to the outer 5% of data assuming normal distribution.
For the logical outlier detection, the onsets, peaks and offsets were compared to each other.
This was done for P offsets and R onsets, and R offsets and T onsets. It was checked, whether
the P offset occurred before the R onset and the R offset occurred before the T onset. Through
visual evaluation it was determined, that the P offsets and R offsets were determined more
accurately. Therefore the logical outlier detection aimed at catching wrongly determined R
and T onsets. Additionally, it was checked, whether the onsets and offsets of the same wave
occurred in the correct order. The final outlier detection was based on physiology. For this P
onset, P peak, T peak and T offset outliers were detected. Various time differences were looked
at and compared to normal ranges (PR interval: 0.12 - 0.20 seconds, QRS interval: 0.08 -
0.12 seconds and QT interval: 0.35 -0.43 seconds) [Hea]. If the calculated time difference
exceeded 30% of the normal boarder ranges in either direction, that wave parameter was
declared an outlier. For the wave to be included in the corresponding feature extraction and
therefore in the analysis, neither onset, peak or offset were allowed to be classified as outliers.

The processing and segmentation of the signals were primarily based on Neurokit2, a
Python toolbox for neurophysiological signal processing [Mak21] and ECGdeli, a Matlab
toolbox for filtering and processing single or multilead ECGs [Pil20].
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4.3 Feature Calculation

This section describes the feature calculation performed on the data recorded during the
previously described study. The features used for this project are comprised of standard
features extracted from ECG measurements and features with importance for HF patients.
Standard features include, among others, wave duration and amplitudes. Features that have
special importance for HF patients are based on literature findings. Those features were shown
to have power in predicting HF decompensation and death. A review of such features has
been outlined in Table 3.1. The described features are often calculated from a 24 hour ECG
and multiple leads. As the smartwatch ECG is a 30 second, lead I ECG not all parameters
were used for this analysis. Table 4.3 gives an overview which of the previously described
features can be extracted from a smartwatch ECG.

Table 4.3: Parameters, extractable from a smartwatch ECG identifying and predicting de-
compensation in heart failure patients.

Recording length (30 Second)

is sufficient

Lead 1

is sufficient
Included in Analysis

HR Recovery X(max HR from PPG sensor) X(max HR from PPG sensor) X

HR Reserve X(max HR from PPG sensor) X(max HR from PPG sensor) X

HR Turbulence
premature ventricular contraction needed;

unlikely in a 30 second recording
X 7

HR Variability
X SDNN, total power, LF power

7 SDANN, Ultra LF Power
X

X

SDNN, total power, LF power

HR X X X

QRS Duration X X X

QT Dynamicity
X QT Duration, QTc Duration

7 QT/RR slope (24 hours needed)
X

X

QT Duration, QTc Duration

T Wave

Morphology

X Asymmetry, Notch, Flatness,

Lead Dispersion, TCRT

7 Morphology Resitution

X Asymmetry, Notch, Flatness

7 Lead Dispersion, TCRT,

Morphology Restitution

X

Asymmetry and Flatness

TWA
in theory possible;

effect is yet to be discussed
X X
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Figure 4.3: The ECG signal of a healthy human heart in sinus rhythm.

Heart Rate
The instantaneous HR or heart frequency was determined on the basis of the RR interval
from one beat to the next. The mean, minimum and maximum heart rate were determined
from the instantaneous HR. The mean HR was extracted for all 30 seconds recordings. The
mean and maximum HR were computed for the 6 minute ECG recording of the reference
system. The mean and maximum HR, recorded by the smartwatches during the 6MWT were
manually derived from the downloaded health data.

Heart Rate Recovery and Reserve
HR Recovery was calculated as the difference between maximum HR during the 6MWT and
the mean HR, obtained from the recordings in recovery phase. The recovery tracings were
on average obtained at around 2 minutes after termination of the 6MWT. HR Reserve was
calculated as the difference of maximal HR during the 6MWT and the resting HR, obtained
as the mean HR from the ECG recording in the resting phase.

Heart Rate Variability
Extracted featured for the time domain include standard deviation of the NN interval (SDNN),
square root of the mean of the squared successive differences between adjacent RR inter-
vals (RMSSD), standard deviation of the successive differences between RR intervals (SDSD),
proportion of RR intervals greater than 50 ms, out of the total number of RR intervals (pNN50)
and HRV triangular index (HTI). Frequency domain parameters are LF, high frequncy (HFr),
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low frequency normlalized (LFn), high frequncy normalized (HFn) and LF/HFr. Additionally
the total power is calculated by addition of LF and HFr. The HRV parameters were calu-
clated using the Neurokit2 Python toolbox [Mak21]. For the spectral density estimation the
Lomb-Scargle method was used as this yields more reliable results for ECG recordings of 30
seconds [Weh21].

PR Interval
The PR interval is measured from the onset of the P wave to the onset of the Q wave. It is
therefore also referred to as the PQ interval.

QRS Area
The QRS area is calculated as the integral from the onset of the Q wave to the offset of the S
wave. It gives the net deflection of the QRS complex, which can be net positive or net negative.

QRS Duration
The QRS duration is measured from the beginning of the Q wave to the end of the S wave.

QT Interval
The QT interval is measured from the beginning of the QRS complex to the end of the T
wave. Since the QT interval is a time duration interval, it is influenced by the R-R cycle
length. To get meaningful values for the repolarization duration analysis, adjustments for
heart rate have to be made. Various formulae have been developed to estimate the QT interval
at a standard heart rate of 60 bpm, known as the corrected QT (QTc) interval. For this project
the correction was done using the commonly used, exponential correction formula, known as
Bazett formula [Baz97].

QTc =
QT√
RR

(4.1)

T Wave Alternans
TWA were calculated using the modified moving average (MMA) method as described by
Nearing and Richard [Nea02]. Alternatively, TWA can be calculated using a spectral method
as done in by Sarzi Braga et al. [Sar04] and Monasterio et al. [Mon12]. For computing
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TWA using the spectral method, the data is usually recorded during bicycle or treadmill
exercises. The MMA method was designed to circumvent the requirements of the spectral
method (stabilization of heart rate for several minutes by means of exercising). Using the
MMA method, the ECG can also be computed at rest [Nea02].

Heartbeats were separated into odd and even groups. Next, a MMA computed beat is
formed, using the current MMA beat and the following ECG beat in the series. According to
their difference, the next MMA beat’s value changes. MMA beats are continuously computed
for each group. TWA were then calculated as the maximum absolute value of the difference
between the odd and even MMA computed beats within the ST segment and T wave for each
15 second interval. All formulae used for the calculation are thoroughly described in [Nea02].

T Wave Morphology
Parameters reflecting the morphology of the T wave were based on the work of Isaksens et al.
[Isa21].

Asymmetry refers to how much the peak of the T wave is shifted to the left or right. It is
measured as the difference in the slopes of the ascending and descending part of the T wave
according to Formula 4.2.

Asymmetry =

∑T
t0
(asc′(t)− desc′(t))2

T − t0
(4.2)

asc′(t) describes the slope of the rising part of the T wave, while desc′(t) describes slope of
the falling part. T indicates the maximal number of time steps, and t the discrete time steps.
t0 is first time step for which both asc′(t) and desc′(t) are defined.

The Flatness score [Isa21] describes how peaked or flattened the T wave is. High scores
are found for flattened T waves while low scores describe peaked T waves. It is calculated
using the second and fourth central moment as described in Formula 4.3.

Flatness = 1− M4

M2
2

(4.3)

M2 and M4 correspond to the second and fourth central moment, respectively.
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Wave Amplitude
Wave amplitudes are calculated as the difference from the baseline to the peak of the wave. P
wave, R wave and T wave amplitude were evaluated.

Wave Duration
Wave durations were calculated as the time between their on- and offset. P wave and T wave
durations were evaluated.

4.4 Evaluation

4.4.1 Exclusion of Data

ECG recordings, for which the smartwatch detected AF were not included in the analysis.
This decision was based on the rhythm notification of the smartwatches [App22]. Therefore,
one Apple Watch recording in recovery phase and one Withings Scanwatch recording in
recovery phase, from two different healthy participants needed to be excluded. All data from
one HF patient were excluded, as the patient displayed AF in all performed recordings.

Additionally, the quality of the Nexus recordings was evaluated. Recordings with insuf-
ficient quality were excluded. This decision was made based on visual inspection by the
author.

4.4.2 Correlation and Agreement

A correlation analysis was performed to assess the relationship between reference ECG
parameters and smartwatch ECG parameters. The Spearman correlation was used, as the data
were non-normally distributed. A correlation coefficient r was computed for each parameter.
Additionally, the average correlation coefficient was computed for all parameters. To account
for underestimation of the correlation, caused by the skewness of the sampling distribution of
the correlation coefficients, Fisher’s z transform was used prior to averaging. The correlation
coefficient takes values between r = −1 and r = 1. A negative value represents a inverse
correlation, while a positive value represents a direct correlation. According to common
guidelines [Muk12], r ≤ |0.3| was considered poor or negligible correlation, r in range
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|0.3− 0.5| was considered a low correlation, r in range |0.5− 0.7| was considered moderate
correlation, r ≥ |0.7−0.8| was considered high correlation, and r ≥ 0.9 was considered very
high correlation. For this comparison, a high to very high positive correlation is desirable.

As the correlation coefficient is a measure of association rather than agreement, it is not a
sufficient statistic for comparing an established measurement method with a new technique
in the clinical field [Bla86]. Therefore, Bland-Altman [Bla86] analysis was performed to
identify the relative bias and the Limits of Agreement (LoA). Small bias and small ranges
of LoA are desirable. The bias is calculated by taking the mean of the differences between
the two measuring techniques. LoA represent the limits for which 95% of all differences
will lie in. They are calculated as the mean of differences ±1.96 standard deviation of
differences. LoA can help decide, whether a new measuring technique is sufficient enough.
If the differences within the LoA are not clinically important, the measuring techniques can
be used interchangeably. Acceptable ranges have to be decided based on the measured values
and the individual clinical application.

4.4.3 Differences

Comparison of Correlations

To establish the significance of the correlation of the extracted parameters, comparisons of
correlation coefficients were made. The average correlation of all parameters was compared
between the watches (Apple Watch and Withings Scanwatch), the participants (healhty and
HF), the recording phases (resting and recovery) and the ECG segmentation algorithms (Neu-
rokit and ECGdeli).

Independent and dependent two-tailed t-tests were used for evaluating mean accuracy
differences in those groups. Independent t-tests were used to determine whether there is a
statistically significant difference between the means in two unrelated groups. Dependent
t-tests were used for related groups. The tests were performed on Fisher’s z transformed
correlation coefficients to account for the skewness of the sampling distribution and get
normally distributed data. The results of the t-test are reported as follows: t(degree of
freedom) = t-statistic, p = p-value, d = cohen-d effect size.
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Fisher’s r to z transform was also used to assess whether individual parameters differed in
correlation between individual groups. The test statistic z [Hin03] is described in Formula
4.4.

z =
z_r1− z_r2√

1
n1−3

+ 1
n2−3

(4.4)

z_r1 is the z transform of the first correlation coefficient and zr2 is the z transform of the
second correlation coefficient. n1 and n2 are the sample sizes used to compute the correlations.
The test z statistic was converted to the p-value, which is the value reported for this test.

A statistically significant difference is observed for p < 0.05. The following notation
was used to indicate statistical significance in Figures and Tables: ns: not significant, * for
p < 0.05, *** for p < 0.01 and *** for p < 0.001. As the study is highly exploratory and
it is more important to avoid a type II error than a type I error, the level of significance and
p-values were not adjusted for multiple comparisons [Arm14].

Assessment of Differences between Healthy and HF Participants

To assess the meaningfulness of individual parameters, it was investigated whether there were
any differences between the parameters for HF and healthy participants. As most of the data
were non-normally distributed and the groups were independent, a two-tailed Mann-Whitney-
U test was used. This analysis was performed on parameters extracted from the smartwatch
recordings.

A statistically significant difference is again observed for p < 0.05. data are reported Due
to the highly exploratory character of this study, a correction for multiple comparisons was
not performed. All statistical analyses was done using pingouin, an open-source statistical
package in Python [Val18] and are reported as follows: U-value, p = p-value, CLES = common
language effect size (CLES).
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Results

5.1 Feasibility to Record ECG and SpO2

After a short introduction on how to use the smartwatches, no participants had problems
conducting recordings on their own. Only four participants had recorded an ECG with a
smartwatch prior to this study. All four of them were HF patients.

Seven of the HF participants stated that they could imagine using the watches at least once
a week to monitor their heart activity. Six of them could imagine using it daily. 16 healthy
participants said they could see themselves using the smartwatch ECG regularly, if they were
diagnosed with a heart condition, 12 of them on a daily basis. Only one HF participant and
two healthy participants stated that they could not see themselves using it. For reasons they
stated data privacy concerns and a feeling of constant worry. One participant did not give a
reason.

While all participants were able to perform the SpO2 measurements, the devices often
gave inconclusive results. On the first try, the SpO2 recording failed for 10 participants (HF
= 7, healthy = 3) in resting phase and for seven participants (HF = 3, healthy = 4) in the
recovery phase using the Withings Scanwatch. Detailed results on how often the Apple Watch
measurement failed cannot be given, as inconclusive measurements are not saved by the
Apple Health app. The recording was repeated three times at the most for each phase. For
one participant (HF) it was not possible to obtain an SpO2 measurement in resting phase
using the Apple Watch and for two participants (both HF) using the Withings Scanwatch. For
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one participant (HF) it was not possible in the recovery phase when using the Apple Watch.
When measuring with the Withings Scanwatch the recording in recovery phase failed for two
participants (HF = 1, healthy = 1).

5.2 Outlier Detection

Table 5.1 shows the results of the outlier detection. Four 30 second recordings were recorded
by the Nexus device, two by the Apple Watch and two by the Withings Scanwatch for each
participant. The outlier detection has greatest impact on the exclusion of R waves.

Table 5.1: Table showing the results of the outlier detection. The numbers of detected waves
before and after outlier detection are given for P, R and T wave. The results are shown for
recordings obtained by the Nexus device, the Apple Watch and the Withings Scanwatch.

Recording Device Algorithm
P Wave

(before - after)
R Wave

(before - after)
T Wave

(before - after)

Nexus
Neurokit 3537 - 2949 3275 - 2087 3442 - 3036

ECGdeli 3775 - 3165 3775 - 2184 3620 - 3176

Apple Watch
Neurokit 1469 - 1231 1421 - 960 1631 - 1442

ECGdeli 1770 - 1479 1770 - 1122 1668 - 1458

Withings Scanwatch
Neurokit 1773 - 1501 1655 - 1147 1693 - 1459

ECGdeli 1757 - 1410 1757 - 1318 1654 - 1368

5.3 Correlation and Agreement

ECG Data in Resting and Recovery Phase

Example ECG signals recorded with the smartwatches and reference system in the resting
phase, are shown in Figure 5.1. The signal was segmented into single heartbeats and is
portrayed as the mean with it’s standard deviation. The signal of one healthy participant as
well as of one HF participant is shown.
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Figure 5.1: Mean heartbeats and their standard deviation of Nexus and smartwatch (Apple
Watch (Apple), Withings Scanwatch (Withings) recordings. ECG tracings from two different
participants (a) healthy participant (b) heart failure participant

The mean correlation coefficient betweeen Apple Watch and reference recording for all
parameters over all phases and participants is r = 0.51 for ECG segmentation performed with
the Neurokit algorithm, and r = 0.49 for ECG segmentation performed with the ECGdeli
algorithm. The mean correlation coefficient between Withings Scanwatch and reference
recording is r = 0.40 using the Neurokit algorithm, and r = 0.36 using the ECGdeli al-
gorithm. This corresponds to a low or moderate positive overall correlation according to
common guidelines [Muk12].

The mean correlation coefficient for all parameters, excluding amplitude and amplitude
related parameters (P amplitude, R amplitude, T amplitude, T asymmetry, T flatness, TWA
and QRS area), over all phases and participants is slightly higher but still corresponds to a
low or moderate positive correlation (Apple-Neurokit: r = 0.62, Apple-ECGdeli: r = 0.59,
Withings-Neurokit: r = 0.50 and Withings-ECGdeli: r = 0.44). The segmentation algo-
rithms were compared on the whole dataset using the dependent t-test. Despite achieving
a higher mean correlation using the Neurokit algorithm for both the Nexus-Apple Watch
correlation and the Nexus-Withings Scanwatch correlation, there was no significant effect
for both watches (Comparison of correlation computed on Nexus-Apple Watch recording:
t(24) = 0.29, p = 0.77, d = 0.05 , Comparison of correlation computed on Nexus-Withings
Scanwatch: t(24) = 0.89, p = 0.37, d = 0.14). Therefore it is not clear which algorithm
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is more accurate and the following analysis was performed for both. To make this section
more readable, following abbreviations will be used to refer to the individual smartwatch
recordings segmented with different algorithms: Apple Watch recordings segmented with the
Neurokit or ECGdeli algorithm will be referred to as Apple-Neurokit and Apple-ECGdeli,
respectively. Correspondingly, ECG recordings from the Withings Scanwatch will be referred
to as Withings-Neurokit and Withings-ECGdeli.
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Figure 5.2: Spearman correlation coefficients of the individual parameters extracted from the
ECG recordings. The coefficients were calculated for all recorded parameters using different
ECG segmentation algorithms (Neurokit, ECGdeli) and watches (Apple Watch (Apple) and
Withings Scanwatch (Withings)). Correlation coefficient is color and size coded. Blue squares
indicate a moderate to very high positive correlation.

Correlation coefficients of the individual parameters can be seen in Figure 5.2. The
correlation coefficients of smartwatch and reference parameters are shown over all samples.
The size of the squares in the Figures 5.2 were mapped to represent the absolute correlation
coefficient value, while the color represents the actual correlation coefficient value. Blue
squares indicate a moderate to very high positive correlation between the parameters.

Features for which an overall high to very high positive correlation (r ≥ 0.7) could
be observed, include HR (for Apple-Neurokit, Apple-ECGdeli, Withings-Neurokit and
Withings-ECGdeli), HRV HTI (for Apple-Neurokit, Apple-ECGdeli, Withings-Neurokit and
Withings-ECGdeli), HRV RMSSD (only for Apple-Neurokit), HRV SDNN (only for Apple-
Neurokit), HRV SDSD (only for Apple-Neurokit), HRV pNN50 (for Apple-Neurokit and
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Apple-ECGdeli), PR Duration (only for Apple-ECGdeli), QRS Duration (for Appel-Neurokit,
Apple-ECGdeli and Withings-ECGdeli) and QT Duration (only for Withings-Neurokit).

HR, QRS Duration and QT Duration, features with high to very high positive correlation
are shown in scatter plots (Figure 5.3 and Figure 5.4) to visualize their correlation. Bland-
Altman plots show their mean differences (bias) and limits of agreements (LoA). Figure 5.3
shows the scatter and Bland-Altman plots for the features computed from the Nexus and Apple
Watch recordings, while Figure 5.4 shows the same for the features computed with the Nexus
and Withings Scanwatch recordings. A full table of mean values, correlation coefficients, bias
and LoA for all parameters extracted with different segmentation algorithms and recorded
with different watches can be found in Appendix B.1.

Figure 5.2 additionally suggests, that some parameters extracted from the Apple Watch
recordings have a higher correlation than the parameters extracted from the Scanwatch
recordings. Individual parameters that achieved a statistically significant difference between
the two watches were HRV pNN50 (p = 0.024), HRV RMSSD (p = 0.038), HRV SDSD
(p = 0.038), HRV total power (p = 0.019) when using Neurokit and HRV HTI (p = 0.029),
HRV RMSSD (p = 0.034), HRV SDSD (p = 0.029) and HRV pNN50 (p = 0.005) when
using ECGdeli.

The dependent t-test was used to assess whether a difference in overall correlation between
Apple Watch and Withings Scanwatch could be observed. An overall statistical significant
difference (t(17) = 2.58, p = 0.02, d = 0.57) could be observed for the comparison
of Apple Watch (mean correlation r = 0.61) and Withings Scanwatch (mean correlation
r = 0.50) when when using the Neurokit segmentation algorithm. A significant difference
(t(17) = 3.25, p = 0.004, d = 0.56) was also observed between Apple Watch (mean correla-
tion r = 0.59) and Withings Scanwatch (mean correlation r = 0.44) when using the ECGdeli
algorithm. Amplitude and amplitude related parameters as well as 6MWT data were excluded.
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Figure 5.3: Scatter and Bland-Altman plots for comparison of Nexus and Apple Watch for
heart rate and QRS and QT duration. Calculated from ECG recordings, using two different
segmentation algorithms. Left: Scatter plot including identity line (grey) and Spearman
correlation coefficient r. Right: Bland-Altman plots including bias (solid line) and Limits of
Agreement (LoA) (dashed line).
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Figure 5.4: Scatter and Bland-Altman plots for comparison of Nexus and Withings Scanwatch
for heart rate and QRS and QT Duration. Calculated from ECG recordings, using two different
segmentation algorithms. Left: Scatter plot including identity line (grey) and Spearman
correlation coefficient r. Right: Bland-Altman plots including bias (solid line) and Limits of
Agreement (LoA) (dashed line)
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Six Minute Walking Test Data

The mean HR and maximum HR were extracted during the 6MWT. Additionally, HR Reserve
and HR Recovery were calculated. Those parameters were not included in the general analysis
and are handled separately, as the HR measurements of the smartwatches do not stem from
an ECG recording, but were measured through a photoplethysmogram (PPG) sensor during
the walk.

The mean HR during the walk shows very high correlation between Apple Watch and
Nexus recording for both algorithms (Neurokit: r = 0.99, p = 2.36 × 10−20, 95%CI
[0.97, 0.99], ECGdeli: r = 0.99, p = 5.42 × 10−21, 95%CI [0.98, 1.0]). For the Withings
recording, the mean HR shows a low correlation for both algorithms (Neurokit: r = 0.42,
p = 0.04, 95%CI [0.02, 0.7], ECGdeli: r = 0.40, p = 0.06, 95%CI [−0.01, 0.69]). The
maximum HR achieved a low correlation between Apple Watch and Nexus recording when
segmented with the Neurokit algorithm (r = 0.43, p = 0.03, 95%CI [0.04, 0.7]) and a high
correlation when segmented with the ECGdeli algorithms (r = 0.76, p = 1.9× 10−5, 95%CI
[0.51, 0.89]). However, the scatter plot in Figure 5.5 suggests that the agreement is also low
when segmented with ECGdeli. A poor correlation between Withings Scanwatch and Nexus
recording can be observed for the maximum HR for both algorithms (Neurokit: r = 0.0,
p = 4.93× 10−2, 95%CI [−0.4, 0.4], ECGdeli: r = 0.31, p = 0.14, 95%CI [−0.11, 0.63]).

HR Reserve and HR Recovery also show poor to moderate correlations for all recordings.
An exception is the correlation between Apple Watch and Nexus for HR Reserve when
segmented with the ECGdeli algorithm (r = 0.70, p = 1.97 × 10−4, CI95% [0.41, 0.86]).
However, based on the bias (83 bpm) and LoA (lower limit = 27 bpm, upper limit = 138 bpm)
a high agreement is not suggested. A full table of correlation coefficients, mean differences
and LoA can be found in Appendix B.2.
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Figure 5.5: Scatter and Bland-Altman plots for comparison of Nexus and Apple Watch
of mean and maximum heart rate recorded during the six-minute walk. Calculated using
two different segmentation algorithms. Left: Scatter plot including identity line (grey) and
Spearman correlation coefficient r. Right: Bland-Altman plots including bias (solid line) and
Limits of Agreement (LoA) (dashed line).
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Figure 5.6: Scatter and Bland-Altman plots for comparison of Nexus and Withings Scanwatch
of mean and maximum heart rate recorded during the six-minute walk. Calculated using
two different segmentation algorithms. Left: Scatter plot including identity line (grey) and
Spearman correlation coefficient r. Right: Bland-Altman plots including bias (solid line) and
Limits of Agreement (LoA) (dashed line).
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5.4 Differences

Comparison of Correlations

Breaking down the data set leads to the comparison of various groups. The individual corre-
lation coefficients were calculated when differentiating between healthy and HF participants
(see Figure 5.7). A clear trend for which group (healthy vs HF) achieved stronger correlation
cannot be observed. However, individual parameters show significant differences in correla-
tion. For Apple-Neurokit a significant difference in correlation between healthy and HF could
be found for HR (p = 0.0002), P Duration (p = 0.011), QRS Duration (p = 0.035), and T
Duration (p = 0.004). HRV pNN50 (p = 0.013), HRV HFr (p = 0.002), and HRV total
power (p = 0.002) were significantly different for Apple-ECGdeli. P Duration (p = 0.020),
R Amplitude (p = 0.006), and HRV SDNN (p = 0.010) for Withings-Neurokit and R Ampli-
tude (p = 0.002) for Withings-ECGdeli. As can be seen in Figure 5.7, not all features have a
higher correlation when extracted from the ECG signal of healthy participants. A full set of
correlation coefficients, bias and LoA can be found in Appendix B.3 and B.4.
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Figure 5.7: Spearman correlation coefficients of the individual ECG parameters for different
participant groups (heart failure (HF) and healthy). The coefficients were calculated using
different ECG segmentation algorithms (Neurokit and ECGdeli) and watches (Apple Watch
(Apple) and Withings Scanwatch (Withings)). Correlation coefficient is color and size coded.
Blue squares indicate a moderate to very high positive correlation.
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The independent t-test was used, to evaluate the overall correlation difference between
healthy and HF participants. Amplitude and amplitude related features and 6MWT data
were excluded. While the HF group achieved an higher average correlation over the parame-
ters (r = 0.72) compared to the healthy group (r = 0.57), a significant difference was not
observed (t(34) = −1.6, p = 0.12, d = 0.53) for Apple-Neurokit. When comparing the
correlations of the parameters for Apple-ECGdeli, a higher mean correlation was found for
the HF group (r = 0.66) compared to the healthy group (r = 0.52) but showed no significant
effect (t(34) = −1.46, p = 0.15, d = 0.49). For Withings-Neurokit, the healthy group
showed a higher average correlation over the parameters (r = 0.49) compared to the HF
group (r = 0.44). A significant effect was not observed (t(34) = −0.48, p = 0.63, d = 0.16).
The average value of the correlation was not significantly different (t(34) = −0.39, p = 0.70,
d = 0.13) between the healthy group (r = 0.40) and the HF group (r = 0.43) for Withings-
ECGdeli.

Furthermore, the correlation coefficients were computed when differentiation between
resting and recovery phase (see Figure 5.8). Slightly higher correlations for parameters ex-
tracted from an ECG recorded in resting phase, especially when segmenting with the ECGdeli
algorithm, are suggested. However, individual features also achieved higher correlation
coefficients in the recovery phase. For Apple-Neurokit a significant difference in correla-
tion between resting and recovery phase could be found for HRV SDNN (p = 0.015). HR
(p = 0.002) and HRV pNN50 (p = 0.001) were significantly different for Apple-ECGdeli,
HRV SDNN (p = 0.006), HRV RMSSD (p = 0.030) and HRV SDSD (p = 0.025) for
Withings-Neurokit and QT Duration (p = 0.014), HRV HFn (p = 0.038) and HRV LF
(p = 0.018) for Withings-ECGdeli. The complete correlation coefficients for each parameter
in the different recording phases can be found in Appendix B.5 and B.6.

A dependent t-test was performed to compare the correlation coefficients of the param-
eters between the resting group and the recovery group. Amplitude and amplitude related
parameters and 6MWT data were excluded. For Apple-ECGdeli, the average correlation of
the resting group (r = 0.69) was significantly higher (t(17) = 2.31, p = 0.034, d = 0.51)
than the average correlation of the recovery group (r = 0.52). A significant difference
(t(17) = 3.18, p = 0.006, d = 0.79) was also found between the resting group (r = 0.54)
and recovery group (r = 0.33) for Withings-ECGdeli. The resting group showed a lower
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Figure 5.8: Spearman correlation coefficients of the individual ECG parameters for different
recording phases (rest and recovery (rec)). The coefficients were calculated using different
ECG segmentation algorithms (Neurokit and ECGdeli) an watches (Apple Watch (Apple)
and Withings Scanwatch (Withings). Correlation coefficient is color and size coded. Blue
squares indicate a moderate to very high positive correlation.

average correlation (r = 0.58) than the recovery group (r = 0.63) for Apple-Neurokit, but
there was no significant effect (t(17) = −1.12, p = 0.28, d = 0.25). Despite finding a higher
average correlation of the parameters for the resting group (r = 0.58) than in the recovery
group (r = 0.33) for Withings-Neurokit a significant difference was not found (t(17) = 1.77,
p = 0.09, d = 0.46).

Assessment of Differences between Healthy and HF Participants

A subset of different parameters showed a statistically significant difference in measurements
between healthy and HF participants when analyzed with the Mann-Whitney-U test on the
individual smartwatch recordings. Statistical significance depended on the segmentation
algorithm, the phase and the watch. An overview can be found in Table 5.2. Boxplots of the
statistically significant features can be found in Appendix C.

The data extracted from the 6MWT (HR mean, HR max, HR Reserve and HR Recovery)
were also compared between the two different groups. Differences could be found for HR



50 CHAPTER 5. RESULTS

mean when recorded with the Withings Scanwatch (Neurokit: U − value = 96.0, p = 0.049,
CLES = 0.76 median healthy: 103 bpm and HF: 87 bpm, ECGdeli: U − value = 91.0,
p = 0.049, CLES = 0.76, median healthy: 103 bpm and HF: 87 bpm). Additionally, a
statistically significant difference was found for HR Recovery when recorded with the Apple
Watch and segmented with ECGdeli (U − value = 79.0, p = 0.021 CLES = 0.82, median
healthy: 33 bpm and HF: 21 bpm). Boxplots of the parameters can be found in Appendix C.

Oxygen saturation was compared between healthy and HF participants as shown in Figure
5.9. No significant difference could be seen in resting phase (Apple: U − value = 65.0,
p = 0.93, CLES = 0.51 median healthy: 97% and HF: 97%, Withings: U − value = 61.0,
p = 0.66, CLES = 0.56, median healthy: 98% and HF: 97.5%) or in recovery phase (Apple:
U − value = 71.5, p = 0.62, CLES = 0.57, median healthy: 97.5% and HF: 97%, Withings:
U − value = 72.0, p = 0.14, CLES = 0.71 median healthy: 98% and HF: 97%).
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Figure 5.9: SpO2 in resting and recovery phase. Dots present the measurements of the
individual participants. (ns: not significant)
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Table 5.2: Features showing a statistically significant difference between HF and healthy
participants. Evaluation was done using the Mann-Whitney-U test.

Resting Phase Recovery Phase

Feature U -Value p -Value CLES Median
healthy

Median
HF Feature U -Value p -Value CLES Median

healthy
Median

HF

Apple Watch (Neurokit Segmentation)

HR (bpm) 69.0 0.026 0.82 67 60 HR (bpm) 74.0 0.006 0.88 72 61

QRS Area (µVs) 8.0 0.002 0.89 3.64 13.36 QRS Area (µVs) 10.0 0.006 0.12 3.56 12.86

QT Duration (ms) 17.0 0.041 0.20 412 465 QT Duration (ms) 15.0 0.026 0.18 402 452

R Amplitude (µV) 15.0 0.018 0.67 416 618 R Amplitude (µV) 13.0 0.015 0.15 263 591

Apple Watch (ECGdeli Segmentation)

HR (bpm) 47.0 0.027 0.85 66 60 HR (bpm) 63.0 0.009 0.88 72 63

QT Duration (ms) 20.0 0.046 0.22 418 446 HRV HFr (ms2) 22.0 0.044 0.21 0.053 0.117

QTc Duration (ms) 19.0 0.037 0.21 442 469 HRV total power (ms2) 21.0 0.036 0.59 0.059 0.125

QRS Area (µVs) 11.0 0.006 0.12 2.34 12.19

QT Duration (ms) 15.0 0.018 0.17 410 470

R Amplitude (µV) 13.0 0.011 0.61 291 606

Withings Scanwatch (Neurokit Segmentation)

HR (bpm) 90.0 0.005 0.88 70 59 QRS Area (µVs) 20.0 0.011 0.17 2.90 8.32

PR Duration (ms) 21.0 0.013 0.18 116 150 R Amplitude (µV) 27.0 0.040 0.23 215 481

QRS Area (µVs) 11.0 0.003 0.11 3.29 11.37

QT Duration (ms) 21.0 0.036 0.21 387 458

R Amplitude (µV)) 14.0 0.008 0.14 257 449

Withings Scanwatch (ECGdeli Segmentation)

QRS Area (µVs) 29.0 0.041 0.23 1.21 11.20 QRS Area (µVs) 24.0 0.033 0.21 2.28 8.61

R Amplitude (µV) 29.0 0.041 0.23 263 438 R Amplitude (µV) 26.0 0.047 0.23 214 486
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Discussion

The aim of this study was to assess the feasibility and reliability of 1-lead ECG recordings
from smartwatch devices on a healthy and a HF patient group. Additionally, the significance
of the extracted features was investigated for differentiating healthy and HF participants.

The data indicates, that individual parameters can be captured accurately by smartwatch
ECGs for the healthy and HF participants. HR, QRS duration and QT duration showed a high
positive correlation (r > 0.7) between smartwatch and reference recordings. However, the
strength of the correlation depended on the used smartwatch and segmentation algorithm.
Furthermore, the analysis indicates, that HF has no influence on the accuracy of smartwatch
ECGs. Instead, the results suggest, that differences between reference and smartwatch ECGs
may be caused by the automatic ECG segmentation algorithms. Statistically significant
differences in parameters between healthy and HF participants could be observed for individual
parameters. However, the statistical significance of the parameters is not consistent throughout
the devices or algorithms, when assessing the difference of HF and healthy. This suggest that
the power of the results is low and statistical significance could have been achieved by chance.

Overall a low to moderate correlation could be observed for smartwatch and reference
parameters. This can partly be explained, as parameters were extracted from recordings of
two different leads. The feature extraction for the smartwatches was done using a lead I
recording, whereas a lead II recording was used for the reference ECG. Lead I of the reference
ECG was also recorded during the study, but was considered to be too poor quality to use for
the analysis. While time intervals should not be affected by this, high correlations between
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amplitudes and amplitude related features cannot be expected. Furthermore, the reliability of
HRV parameters for ultra short recordings has not been established. The lack of correlation,
especially for frequency domain features could be caused by the insufficient length of the
ECG signal. While the reliability of ultra short term recordings used for HRV analysis is
being investigated, there is a lack of consensus to their reliability [Pec18] [Sha20].

The accuracy of smartwatch ECGs has been explored on patients with acute coronary
syndrome and ST-elevation myocardial infarction [Spa21], as well as on patients with con-
genital heart disease [Kob22]. Those studies suggest that the diseases have no effect on the
accuracy and that basic intervals can be measured reliably by the Apple Watch. The effect
of HF on the quality of smartwatch ECGs has, to the best of our knowledge, not yet been
investigated prior to this project. The finding of this project which is that HF does not appear
to affect the measurements and accuracy of the smartwatch devices complements the findings
of Spaccaritella et al. [Spa21] and Kobel et al. [Kob22].

Multiple studies [Beh20] [Spa21] [Spr22] [Sag20] reported the bias and LoA for the
examined ECG features additionally to the correlation coefficient to evaluate agreement.
Overall the results of those studies suggest a better agreement for QRS, QT, PR and wave
durations than the results of this project. The main difference to those studies is that the ECG
signals were always analyzed manually by one or more experienced health care professionals
as opposed to the automatic segmentation approach used for this project.

An inaccuracy in the segmentation algorithm is suggested by the mean values of typical
time intervals. For QRS complexes, the normal duration ranges from 80 to 120 ms [Hea].
The mean value of QRS duration for this study lies between 118 and 147 ms, depending on
recording device and segmentation algorithm. As the majority of the study population were
healthy participants, a mean duration greater than a normal range seems highly unlikely. A
similar phenomenon can be observed for the QT interval. Normal durations are between 350
and 430 ms [Hea], whereas the reported mean duration ranges from 404 to 443 ms. This
presumable overestimation in duration was not only found in the smartwatches, but also in the
Nexus recordings, suggesting that it is not caused by the signal quality of the smartwatches. A
difference in overall accuracy could not be observed between the algorithms for either watch.

Mannhart et. al [Man22] concluded in the analysis of the automated QTc measurements
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that the automated algorithm of the Withings Scanwatch needs improvement before being
useful for clinical applications. This finding strengthens the theory that the automatic segmen-
tation algorithms play an important role in the decline of the agreement between reference
and smartwatch recordings.

The 6MWT was included as it reflects daily physical activity. As walking is a very
natural activity in daily life it is important to assess the quality of measured data shortly after
such activities. Thomson et al. [Tho19] investigated the HR measure accuracy of different
smartwatches across different exercise intensities. They showed that the validity was high
for very light intensities but decreased with the increase in intensity. Similar findings were
made by Khushhal et al. [Khu17], who also stated that the Apple Watch heart rate sensor
was accurate during walking but accuracy decreased with increasing exercise intensity. It
can be stated, that the PPG sensors of the Apple Watch can very well identify the mean
HR during the walk supporting the findings of Thomson et al. [Tho19] and Khushhal et al.
[Khu17] that PPG sensors of the watches work well for low intensity workouts. Additionally it
shows that HF has no effect on the PPG measurement of mean HR in a HF patient population.
Poor results were found for the maximum HR as it was constantly underestimated by the
smartwatches in all participants. HR Reserve and Recovery both depend on the maximum
HR and therefore show poor results as well.

Due to a lot of independent variables such as different watches, segmentation algorithms
and health conditions, it is difficult to state whether exercise influences the accuracy of the
ECG in recovery phase. The presented results indicate that exercise influences the accuracy of
individual parameters but that it cannot be generalized that recordings after an active session
are of worse quality.

Although this project explored an automated analysis approach, the raw data and results
were not not cleaned or validated by a clinical professional. Furthermore, the number of
participants, especially HF patients, is low. This could affect the analysis of differentiating
between healthy and HF. Including more patients would give more meaningful results. While
the probable inaccuracy of the segmentation algorithm is a main weakness of the study, it shows
that improvements of such algorithms are necessary to make them useful for telemonitoring
systems.
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Conclusion and Outlook

One research goal was to validate ECG parameters extracted from smartwatch ECGs. A
correlation and agreement analysis showed, that individual parameters achieved a high cor-
relation. Those parameter include HR, QRS and QT duration. However, the strength of the
correlation depends on the segmentation algorithm, recording phase and smartwatch. Those
factors have not been addressed in detail and need to be further investigated. Furthermore,
the results indicate that HF does not impact the accuracy of the recordings, but discrepancies
between reference and smartwatch ECGs are caused by the segmentation algorithm. Finally,
differences in the individual parameters between the healthy and HF group have been inves-
tigated. Results were again depended on the segmentation algorithm, recording phase and
smartwatch and are of low power.

The results of this thesis show that there is a potential in using smartwatches to monitor
cardiac activity in HF patients. There is no indication that HF has an effect on the quality of
a smartwatch ECG signal and willingness of the participants to monitor their cardiac activity
with smartwatch devices is high.

Different aspects leave room for future research. For subsequent projects the accuracy
of automated segmentation algorithms needs to be evaluated more thoroughly. There is still
potential for improvements in ECG segmentation algorithms. It is the key for an automated
ECG analysis, which is required for telemonitoring systems. Parameters indicating worsening
of HF have been identified in this project. Long term studies are needed to assess the
meaningfulness of those parameters for risk stratification in HF patients, when computed
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from a 30 seconds long recording. To make those features meaningful in the context of a HF
telemonitoring system, the significance of the parameters would also need to be established
in regards to worsening HF. In connection to this, a study with a larger number of HF patients
and different NYHA classes could be used for the assessment. If these issues can be solved,
smartwatches show great potential to be integrated into telemonitoring systems for HF patients.
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Patents

A.1 Body-worn sensor for characterizing patients with heart
failure

Publication Number US20160249858A1

Date of Publication September 1, 2016

Inventors Matthew Banet, Susan Meeks Pede, Marshal Singh Dhillon, Ken-
neth Robert Hunt

Assignee Baxter Healthcare SA Baxter International Inc

Abstract The invention provides a sensor for measuring both impedance and
ECG waveforms that is configured to be worn around a patient’s
neck. The sensor features 1) an ECG system that includes an analog
ECG circuit, in electrical contact with at least two ECG electrodes,
that generates an analog ECG waveform; and 2) an impedance
system that includes an analog impedance circuit, in electrical
contact with at least two (and typically four) impedance electrodes,
that generates an analog impedance waveform.
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Publication Number Also included in the neck-worn system are a digital processing
system featuring a microprocessor, and an analog-to-digital con-
verter.During a measurement, the digital processing system re-
ceives and processes the analog ECG and impedance waveforms
to measure physiological information from the patient. Finally,
a cable that drapes around the patient’s neck connects the ECG
system, impedance system, and digital processing system.

A.2 Wearable Device Electrocardiogram

Publication Number US20160360986A1

Date of Publication December 15, 2016

Inventors Daniel H. Lange

Assignee Chronisense Medical Ltd

Abstract Provided are a method and systems for measuring an electrocardio-
gram (ECG) using a wearable device. An example system includes
the wearable device in a shape of a band worn on a limb (e.g., a
wrist) of a patient. The wearable device includes an electrical sen-
sor. The wearable device is operable to record, via the at least one
electrical sensor, an electrical signal from the limb of the patient.
The wearable device is operable to split the electrical signal into
segments based on a reference signal. The reference signal includes
an indication of onset times of heart beats. The segments are aver-
aged to derive average ECG data of low signal-to-noise ratio. The
wearable device includes an optical sensor operable to measure
skin color beneath a pulsating artery of the limb. The reference
signal includes a photoplethysmogram (PPG) signal recorded via
the optical sensor simultaneously with the electrical signal.
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Additional Tables

Table B.1: Overall electrocardiagram characteristics. Mean ±standard deviation, Spearman
correlation coefficient and Bland-Altman analysis (bias, LoA). P-values for significance of
correlation: *p < 0.05, ***p < 0.01, ***p < 0.001.

Parameter

(Unit)
Smartwatch Algorithm Nexus ECG Smartwatch ECG

Correlation Coefficient

[95%CI Interval]
Bias (95% LoA)

HR

(bpm)

Apple
Neurokit 69 ±11 72 ±14 0.72*** [0.53, 0.84] -3 (-30, 25)

ECGdeli 69 ±11 70 ±11 0.89*** [0.8, 0.94] -1 (-10, 8)

Withings
Neurokit 69 ±13 70 ±11 0.79*** [0.65, 0.87] -1 (-16, 15)

ECGdeli 68 ±12 71 ±14 0.78*** [0.63, 0.87] -3 (-23, 17)

HRV HF

(ms2)

Apple
Neurokit 0.06 ±0.03 0.06 ±0.03 0.53*** [0.27, 0.72] -0.002 (-0.07, 0.07)

ECGdeli 0.07 ±0.04 0.07 ±0.04 0.40** [0.11, 0.63] 0.003 (-0.09, 0.08)

Withings
Neurokit 0.06 ±0.03 0.07 ±0.03 0.34* [0.07, 0.57] -0.007 (-0.07, 0.06)

ECGdeli 0.07 ±0.04 0.07 ±0.04 0.41** [0.15, 0.63] -0.004 (-0.08, 0.07)

HRV HFn

(n.u)

Apple
Neurokit 0.79 ±0.15 0.81 ±0.11 0.53*** [0.27, 0.72] -0.02 (-0.26, 0.23)

ECGdeli 0.79 ±0.13 0.82 ±0.10 0.42** [0.14, 0.64] -0.03 (-0.31, 0.25)

Withings
Neurokit 0.76 ±0.15 0.82 ±0.10 0.19 [-0.1, 0.45] -0.05 (-0.34, 0.23)

ECGdeli 0.75 ±0.14 0.78 ±0.13 0.59*** [0.36, 0.75] -0.03 (-0.27, 0.20)
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Table B.1 Continued

Parameter

(Unit)
Smartwatch Algorithm Nexus ECG Smartwatch ECG

Correlation Coefficient

[95%CI Interval]
Bias (95% LoA)

HRV HTI

(n.u)

Apple
Neurokit 6.06 ±2.42 5.91 ±2.58 0.84*** [0.72, 0.91] 0.15 (-3.92, 4.22)

ECGdeli 6.23 ±2.61 5.95 ±2.35 0.90*** [0.82, 0.95] 0.28 (-1.86, 2.42)

Withings
Neurokit 6.27 ±3.02 6.03 ±2.94 0.80*** [0.67, 0.89] 0.24 (-4.25, 4.73)

ECGdeli 6.18 ±3.00 5.98 ±2.77 0.76*** [0.61, 0.86] 0.20 (-4.20, 4.61)

HRV LF/HF

(n.u)

Apple
Neurokit 0.26 ±0.40 0.15 ±0.22 0.50** [0.22, 0.7] 0.11 (-0.64, 0.86)

ECGdeli 0.22 ±0.38 0.15 ±0.22 0.44** [0.15, 0.67] 0.07 (-0.76, 0.90)

Withings
Neurokit 0.29 ±0.49 0.12 ±0.19 0.45** [0.19, 0.66] 0.16 (-0.51, 0.83)

ECGdeli 0.29 ±0.48 0.12 ±0.20 0.37* [0.09, 0.59] 0.17 (-0.62, 0.96)

HRV LF

(ms2)

Apple
Neurokit 0.007 ±0.006 0.006 ±0.004 0.27 [-0.05, 0.54] 0.002 (-0.01, 0.01)

ECGdeli 0.007 ±0.006 0.006 ±0.004 0.51*** [0.23, 0.71] 0.001 (-0.01, 0.01)

Withings
Neurokit 0.01 ±0.007 0.005 ±0.004 0.22 [-0.07, 0.48] 0.005 (-0.01, 0.02)

ECGdeli 0.01 ±0.007 0.005 ±0.004 0.24 [-0.05, 0.49] 0.005 (-0.01, 0.02)

HRV LFn

(n.u)

Apple
Neurokit 0.15 ±0.16 0.11 ±0.11 0.48** [0.2, 0.69] 0.04 (-0.23, 0.32)

ECGdeli 0.13 ±0.15 0.10 ±0.11 0.43** [0.13, 0.66] 0.02 (-.0.29, 0.34)

Withings
Neurokit 0.16 ±0.15 0.08 ±0.10 0.45** [0.18, 0.65] 0.07 (-0.15, 0.30)

ECGdeli 0.16 ±0.15 0.08 ±0.10 0.31* [0.02, 0.55] 0.08 (-0.17, 0.33)

HRV RMSSD

(ms)

Apple
Neurokit 43.27 ±33.86 64.06 ±106.75 0.74*** [0.56, 0.85] -20.79 (-194.86, 153.28)

ECGdeli 54.86 ±46.88 78.27 ±111.80 0.55*** [0.3, 0.73] -23.40 (-226.03, 179.23)

Withings
Neurokit 57.87 ±57.33 88.51 ±122.43 0.46** [0.2, 0.66] -30.64 (-250.05, 188.77)

ECGdeli 69.52 ±64.31 150.05 ±172.19 0.16 [-0.13, 0.42] -80.53 (-431.11, 270.05)

HRV SDNN

(ms)

Apple
Neurokit 45.47 ±32.33 57.70 ±64.27 0.70*** [0.51, 0.83] -12.23 (-111.42, 86.97)

ECGdeli 51.03 ±37.45 72.31 ±82.10 0.54*** [0.28, 0.72] -21.29 (-169.62, 127.04)

Withings
Neurokit 53.57 ±47.37 78.89 ±98.67 0.52*** [0.28, 0.7] -25.32 (-197.49, 146.85)

ECGdeli 57.20 ±43.20 120.79 ±139.03 0.21 [-0.08, 0.47] -63.59 (-338.27, 211.09)

HRV SDSD

(ms)

Appel
Neurokit 43.88 ±34.41 64.73 ±107.90 0.74*** [0.56, 0.85] -20.85 (-196.55, 154.85)

ECGdeli 55.67 ±47.63 79.48 ±113.94 0.56*** [0.31, 0.74] -20.85 (-230.04, 182.43)

Withings
Neurokit 58.63 ±58.11 89.68 ±124.34 0.46** [0.2, 0.66] -31.05 (-253.83, 191.73)

ECGdeli 70.53 ±65.26 151.89 ±174.38 0.15 [-0.14, 0.42] -81.36 (-436.20, 273.47)

HRV pNN50

(%)

Apple
Neurokit 18.35 ±21.23 16.75 ±25.25 0.85*** [0.74, 0.92] 1.59 (-20.71, 23.90)

ECGdeli 18.18 ±21.90 18.05 ±23.86 0.82*** [0.69, 0.9] 0.13 (-14.78, 15.05)

Withings
Neurokit 19.89 ±24.22 21.68 ±27.48 0.64*** [0.44, 0.78] -1.79 (-32.87, 29.29)

ECGdeli 18.63 ±23.00 24.19 ±26.77 0.49*** [0.24, 0.68] -5.56 (-41.65, 30.53)

HRV total power

(ms2)

Apple
Neurokit 0.06 ±0.03 0.07 ±0.03 0.64*** [0.41, 0.8] -0.003 (-0.07, 0.07)

ECGdeli 0.07 ±0.5 0.08 ±0.04 0.47** [0.18, 0.68] -0.005 (-0.09, 0.08)

Withings
Neurokit 0.07 ±0.03 0.07 ±0.03 0.23 [-0.06, 0.49] -0.001 (-0.07, 0.07)

ECGdeli 0.08 ±0.04 0.08 ±0.04 0.37** [0.1, 0.6] -0.0001 (-0.08, 0.09)



63

Table B.1 Continued

Parameter

(Unit)
Smartwatch Algorithm Nexus ECG Smartwatch ECG

Correlation Coefficient

[95%CI Interval]
Bias (95% LoA)

PR Duration

(ms)

Apple
Neurokit 157 ±37 175 ±30 0.12 [-0.25, 0.46] -19 (-110, 73)

ECGdeli 171 ±33 170 ±32 0.82*** [0.63, 0.92] 1 (-46, 47)

Withings
Neurokit 162 ±41 141 ±33 0.51** [0.22, 0.72] 22 (-62, 105)

ECGdeli 173 ±34 191 ±30 0.58*** [0.31, 0.77] -18 (-82, 46)

P Amplitude

(µV)

Apple
Neurokit 50 ±88 6 ±22 0.48** [0.21, 0.69] 44 (-111, 199)

ECGdeli 34 ±98 3 ±29 0.36* [0.06, 0.6] 32 (-152, 216)

Withings
Neurokit 51 ±82 36 ±17 0.22 [-0.07, 0.47] 15 (-140, 171)

ECGdeli 45 ±91 22 ±22 0.14 [-0.15, 0.41] 23 (-156, 202)

P Duration

(ms)

Apple
Neurokit 89 ±21 130 ±18 0.30* [-0.01, 0.56] -40 (-83, 3)

ECGdeli 139 ±16 151 ±13 0.25 [-0.05, 0.52] -12 (-44, 20)

Withings
Neurokit 93 ±20 75 ±14 0.33* [0.05, 0.56] 18 (-19, 55)

ECGdeli 138 ±13 157 ±17 0.37** [0.1, 0.59] -20 (-53, 13)

QRS Area

(µVs)

Apple
Neurokit 11 ±19 8 ±10 -0.17 [-0.5, 0.19] 3 (-46, 51)

ECGdeli 5 ±24 8 ±12 0.07 [-0.33, 0.44] -3 (-53, 46)

Withings
Neurokit 8 ±18 6 ±6 -0.23 [-0.52, 0.11] 2 (-39, 42)

ECGdeli 2 ±25 4 ±7 0.13 [-0.21, 0.44] -2 (-50, 46)

QRS Duration

(ms)

Apple
Neurokit 118 ±21 137 ±33 0.72*** [0.49, 0.85] -19 (-62, 24)

ECGdeli 132 ±15 147 ±29 0.78*** [0.56, 0.9] -15 (-51, 20)

Withings
Neurokit 122 ±21 137 ±31 0.47** [0.16, 0.69] -15 (-72, 42)

ECGdeli 131 ±16 146 ±23 0.74*** [0.54, 0.86] -15 (-45, 15)

QT Duration

(ms)

Apple
Neurokit 412 ±46 429 ±41 0.65*** [0.38, 0.82] -17 (-82, 47)

ECGdeli 412 ±46 429 ±41 0.39 [-0.0, 0.68] -5 (-109, 99)

Withings
Neurokit 422 ±45 404 ±49 0.75*** [0.56, 0.87] 18 (-56, 93)

ECGdeli 434 ±40 418 ±54 0.37* [0.04, 0.62] 16 (-88, 120)

QTc Duration

(ms)

Apple
Neurokit 430 ±34 458 ±43 0.61** [0.32, 0.79] -27 (-100, 45)

ECGdeli 456 ±26 464 ±56 0.36 [-0.04, 0.66] -8 (-112, 95)

Withings
Neurokit 441 ±39 429 ±48 0.63*** [0.37, 0.8] 12 (-75, 99)

ECGdeli 456 ±24 447 ±45 0.33* [0.0, 0.6] 9 (-77, 94)

R Amplitude

(µV)

Apple
Neurokit 935 ±494 380 ±218 -0.27 [-0.53, 0.04] 555 (-616, 1726)

ECGdeli 786 ±801 326 ±310 -0.21 [-0.48, 0.1] 461 (-1306, 2228)

Withings
Neurokit 853 ±476 304 ±174 -0.17 [-0.44, 0.12] 549 (-496, 1595)

ECGdeli 672 ±832 255 ±242 -0.14 [-0.41, 0.15] 417 (-1261, 2095)

TWA

(µV)

Apple
Neurokit 71 ±77 317 ±424 -0.11 [-0.4, 0.21] -246 (-1108, 617)

ECGdeli 75 ±82 270 ±369 -0.01 [-0.34, 0.33] -194 (-940, 552)

Withings
Neurokit 83 ±109 420 ±659 0.14 [-0.16, 0.41] -337 (-1611, 937)

ECGdeli 75 ±102 197 ±264 -0.04 [-0.37, 0.3] -122 (-688, 444)
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Table B.1 Continued

Parameter

(Unit)
Smartwatch Algorithm Nexus ECG Smartwatch ECG

Correlation Coefficient

[95%CI Interval]
Bias (95% LoA)

T Amplitude

(µV)

Apple
Neurokit 348 ±174 148 ±74 0.46** [0.17, 0.67] 201 (-95, 497)

ECGdeli 353 ±175 137 ±84 0.47** [0.2, 0.68] 216 (-73, 504)

Withings
Neurokit 328 ±186 113 ±56 0.43** [0.17, 0.65] 215 (-111, 541)

ECGdeli 334 ±189 87 ±66 0.39** [0.12, 0.61] 246 (-93, 586)

T Asymmetry

(n.u)

Apple
Neurokit 0.036 ±0.039 0.026 ±0.025 0.27 [-0.04, 0.53] 0.01 (-0.06, 0.08)

ECGdeli 0.005 ±0.015 0.037 ±0.083 0.04 [-0.27, 0.34] -0.031 (-0.18, 0.13)

Withings
Neurokit 0.028 ±0.028 0.097 ±0.047 -0.006 [-0.3, 0.28] -0.069 (-0.16, 0.03)

ECGdeli 0.004 ±0.015 0.051 ±0.054 -0.13 [-0.3, 0.28] -0.047 (-0.16, 0.07)

T Duration

(ms)

Apple
Neurokit 135 ±22 165 ±23 0.55*** [0.29, 0.73] -31 (-72, 11)

ECGdeli 208 ±25 215 ±24 0.02 [-0.29, 0.32] -7 (-70, 56)

Withings
Neurokit 140 ±21 109 ±26 0.22 [-0.08, 0.48] 30 (-27, 87)

ECGdeli 213 ±29 187 ±16 0.19 [-0.1, 0.45] 27 (-31, 85)

T Flatness

(n.u)

Apple
Neurokit -0.81 ±0.18 -0.94 ±0.34 0.39* [0.09, 0.62] 0.13 (-0.49, 0.76)

ECGdeli -0.72 ±0.15 -0.84 ±0.34 0.60*** [0.37, 0.77] 0.12 (-0.42, 0.66)

Withings
Neurokit -0.80 ±0.17 -1.17 ±0.18 0.29* [0.0, 0.54] 0.38 (-0.02, 0.78)

ECGdeli -0.71 ±0.15 -1.17 ±0.18 0.46* [0.2, 0.66] 0.32 (-0.31, 0.95)
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Table B.2: Electrocardiagram characteristics during 6MWT. Mean ±standard deviation,
spearman correlation coefficient and Bland-Altman analysis (bias, LoA) for 6MWT data.
P-values for significance of correlation: *p < 0.05, ***p < 0.01, ***p < 0.001

Parameter

(Unit)
Smartwatch Algorithm Nexus ECG Smartwatch ECG

Correlation Coefficient

[95%CI Interval]
Bias (95% LoA)

HR mean

(bpm)

Apple
Neurokit 97 ±17 95 ±17 0.99*** [0.97, 0.99] 2 (-1, 5)

ECGdeli 97 ±18 95 ±18 0.99*** [0.98, 1.0] 2 (-1, 4)

Withings
Neurokit 97 ±17 103 ±18 0.42* [0.02, 0.7] -7 (-41, 27)

ECGdeli 97 ±18 103 ±18 0.40 [0.02, 0.7] -7 (-41, 27)

HR max

(bpm)

Apple
Neurokit 147 ±24 103 ±20 0.43* [0.04, 0.7] 43 (-4, 90)

ECGdeli 185 ±37 104 ±20 0.76*** [0.51, 0.89] 81 (24, 138)

Withings
Neurokit 147 ±24 121 ±27 0.0 [-0.4, 0.4] 26 (-47, 99)

ECGdeli 185 ±37 122 ±27 0.31 [-0.11, 0.63] 63 (-13, 140)

HR Recovery

(bpm)

Apple
Neurokit 72 ±22 30 ±16 0.04 [-0.38, 0.45] 42 (-9, 93)

ECGdeli 112 ±33 33 ±23 0.34 [-0.09, 0.67] 79 (11, 147)

Withings
Neurokit 74 ±22 49 ±28 -0.28 [-0.61, 0.14] 25 (-56, 105)

ECGdeli 110 ±40 46 ±31 0.4 [-0.02, 0.7] 64 (-14, 142)

HR Reserve

(bpm)

Apple
Neurokit 78 ±20 35 ±19 0.34 [-0.08, 0.65] 44 (-1, 88)

ECGdeli 119 ±33 36 ±16 0.70*** [0.41, 0.86] 83 (27, 138)

Withings
Neurokit 79 ± 22 51 ± 29 0.08 [-0.33, 0.46] 27 (-45, 99)

ECGdeli 117 ± 35 53 ± 28 0.31 [-0.1, 0.46] 63 (-13, 140)
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Table B.3: Electrocardiagram characteristics of the Apple Watch and Nexus Recording for
healthy and HF participants. Mean ±standard deviation, Spearman correlation coefficient
and Bland-Altman analysis (bias, LoA). P-values for significance of correlation: *p < 0.05,
***p < 0.01, ***p < 0.001.

Parameter

(Unit)
Condition Algorithm Nexus ECG Apple Watch ECG

Correlation Coefficient

[95%CI Interval]
Bias (95% LoA)

HR

(bpm)

healthy
Neurokit 70 ± 10 75 ± 14 0.6*** [0.31, 0.79] -4 (-36, 28)

ECGdeli 70 ± 10 72 ± 9 0.86*** [0.72, 0.93] -2 (-11, 8)

HF
Neurokit 66 ± 13 66 ± 12 0.97*** [0.9, 0.99] 0 (-2, 2)

ECGdeli 66 ± 13 66 ± 13 0.83*** [0.48, 0.95] 0 (-3, 3)

HRV HF

(ms2)

healthy
Neurokit 0.06 ± 0.03 0.06 ± 0.03 0.52** [0.2, 0.74] -0.0 (-0.06, 0.06)

ECGdeli 0.06 ± 0.04 0.06 ± 0.04 0.2 [-0.18, 0.52] -0.0 (-0.1, 0.09)

HF
Neurokit 0.07 ± 0.03 0.08 ± 0.04 0.17 [-0.44, 0.68] -0.0 (-0.09, 0.08)

ECGdeli 0.08 ± 0.05 0.09 ± 0.05 0.88*** [0.62, 0.97] -0.01 (-0.05, 0.04)

HRV HFn

(n.u)

healthy
Neurokit 0.77 ± 0.17 0.81 ± 0.11 0.52** [0.2, 0.74] -0.04 (-0.3, 0.23)

ECGdeli 0.78 ± 0.15 0.82 ± 0.11 0.37* [0.02, 0.65] -0.04 (-0.36, 0.27)

HF
Neurokit 0.85 ± 0.07 0.82 ± 0.08 0.47 [-0.14, 0.82] 0.03 (-0.12, 0.18)

ECGdeli 0.81 ± 0.07 0.81 ± 0.08 0.68* [0.17, 0.9] -0.0 (-0.11, 0.11)

HRV HTI

(n.u)

healthy
Neurokit 6.55 ± 2.39 6.09 ± 2.4 0.77*** [0.57, 0.88] 0.45 (-3.67, 4.58)

ECGdeli 6.48 ± 2.46 6.19 ± 2.36 0.85*** [0.7, 0.92] 0.29 (-1.94, 2.52)

HF
Neurokit 4.83 ± 2.03 5.44 ± 2.92 0.91*** [0.71, 0.98] -0.61 (-4.13, 2.91)

ECGdeli 5.6 ± 2.85 5.35 ± 2.21 0.92*** [0.74, 0.98] 0.26 (-1.64, 2.15)

HRv LF/HF

(n.u)

healthy
Neurokit 0.32 ± 0.46 0.16 ± 0.24 0.49** [0.15, 0.73] 0.16 (-0.69, 1.01)

ECGdeli 0.27 ± 0.44 0.16 ± 0.24 0.44* [0.08, 0.7] 0.11 (-0.84, 1.06)

HF
Neurokit 0.12 ± 0.1 0.13 ± 0.16 0.53 [-0.11, 0.86] -0.02 (-0.28, 0.25)

ECGdeli 0.1 ± 0.09 0.12 ± 0.16 0.53 [-0.11, 0.86] -0.03 (-0.3, 0.23)

HRV LF

(ms2)

healthy
Neurokit 0.01 ± 0.01 0.01 ± 0.0 0.34 [-0.04, 0.63] 0.0 (-0.01, 0.01)

ECGdeli 0.01 ± 0.01 0.01 ± 0.0 0.54** [0.21, 0.76] 0.0 (-0.01, 0.01)

HF
Neurokit 0.01 ± 0.0 0.01 ± 0.0 0.1 [-0.53, 0.66] 0.0 (-0.01, 0.01)

ECGdeli 0.01 ± 0.0 0.01 ± 0.0 0.36 [-0.3, 0.79] -0.0 (-0.01, 0.01)

HRV LFn

(n.u)

healthy
Neurokit 0.17 ± 0.18 0.11 ± 0.12 0.48* [0.12, 0.72] 0.06 (-0.24, 0.37)

ECGdeli 0.15 ± 0.17 0.11 ± 0.12 0.43* [0.07, 0.69] 0.04 (-0.31, 0.4)

HF
Neurokit 0.1 ± 0.07 0.09 ± 0.1 0.53 [-0.11, 0.86] -0.0 (-0.16, 0.16)

ECGdeli 0.07 ± 0.06 0.09 ± 0.1 0.53 [-0.11, 0.86] -0.02 (-0.18, 0.14)

HRV RMSSD

(ms)

healthy
Neurokit 42.56 ± 32.59 65.45 ± 121.54 0.73*** [0.51, 0.87] -22.89 (-219.74, 173.97)

ECGdeli 53.77 ± 47.6 67.02 ± 107.54 0.55** [0.24, 0.76] -13.25 (-204.53, 178.03)

HF
Neurokit 45.03 ± 36.78 60.57 ± 54.17 0.75** [0.31, 0.92] -15.54 (-110.51, 79.42)

ECGdeli 57.59 ± 44.93 106.37 ± 117.18 0.43 [-0.19, 0.81] -48.78 (-269.62, 172.06)

HRV SDNN

(ms)

healthy
Neurokit 47.89 ± 33.14 58.49 ± 68.78 0.76*** [0.55, 0.88] -10.59 (-109.56, 88.37)

ECGdeli 53.23 ± 38.65 67.19 ± 81.62 0.63*** [0.34, 0.8] -13.96 (-152.02, 124.11)

HF
Neurokit 39.42 ± 29.36 55.73 ± 51.24 0.51 [-0.09, 0.84] -16.31 (-115.62, 83.0)

ECGdeli 45.52 ± 33.67 85.14 ± 81.9 0.33 [-0.3, 0.76] -39.62 (-205.59, 126.36)
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Table B.3 Continued

Parameter

(Unit)
Condition Algorithm Nexus ECG Apple Watch ECG

Correlation Coefficient

[95%CI Interval]
Bias (95% LoA)

HRV SDSD

(ms)

healthy
Neurokit 43.13 ± 33.09 66.13 ± 122.93 0.73*** [0.51, 0.87] -23.0 (-221.9, 175.9)

ECGdeli 54.54 ± 48.33 68.09 ± 109.69 0.57** [0.26, 0.77] -13.54 (-208.48, 181.39)

HF
Neurokit 45.76 ± 37.44 61.23 ± 54.34 0.76** [0.34, 0.93] -15.47 (-110.3, 79.35)

ECGdeli 58.5 ± 45.72 107.96 ± 119.26 0.43 [-0.19, 0.81] -49.46 (-273.79, 174.87)

HRV pNN50

(%)

healthy
Neurokit 16.6 ± 17.86 14.55 ± 24.52 0.81*** [0.64, 0.91] 2.05 (-24.04, 28.14)

ECGdeli 15.39 ± 17.89 14.95 ± 21.77 0.77*** [0.57, 0.89] 0.43 (-16.93, 17.8)

HF
Neurokit 22.73 ± 27.44 22.25 ± 26.19 0.95*** [0.82, 0.99] 0.47 (-5.26, 6.2)

ECGdeli 25.16 ± 28.43 25.79 ± 26.88 0.96*** [0.87, 0.99] -0.63 (-5.32, 4.07)

HRV total power

(ms2)

healthy
Neurokit 0.06 ± 0.03 0.06 ± 0.03 0.64*** [0.36, 0.82] -0.0 (-0.06, 0.05)

ECGdeli 0.07 ± 0.04 0.07 ± 0.04 0.26 [-0.13, 0.58] -0.0 (-0.09, 0.09)

HF
Neurokit 0.08 ± 0.03 0.08 ± 0.04 0.25 [-0.41, 0.74] -0.0 (-0.1, 0.1)

ECGdeli 0.09 ± 0.05 0.1 ± 0.05 0.91*** [0.68, 0.98] -0.01 (-0.06, 0.04)

PR Duration

(ms)

healthy
Neurokit 144 ± 29 177 ± 29 -0.03 [-0.49, 0.44] -34 (-114, 46)

ECGdeli 155 ± 19 158 ± 31 0.75** [0.33, 0.92] -3 (-55, 49)

HF
Neurokit 176 ± 40 172 ± 31 0.17 [-0.45, 0.68] 4 (-85, 94)

ECGdeli 188 ± 36 183 ± 28 0.67* [0.16, 0.9] 5 (-33, 43)

P Amplitude

(µA)

healthy
Neurokit 59 ± 98 6 ± 23 0.51** [0.19, 0.74] 53 (-117, 223)

ECGdeli 42 ± 111 11 ± 19 0.27 [-0.1, 0.58] 31 (-177, 238)

HF
Neurokit 29 ± 47 7 ± 19 0.35 [-0.28, 0.77] 22 (-74, 117)

ECGdeli 14 ± 46 -20 ± 37 0.43 [-0.19, 0.81] 34 (-71, 139)

P Duration

(ms)

healthy
Neurokit 91 ± 18 129 ± 17 0.13 [-0.25, 0.47] -37 (-81, 6)

ECGdeli 135 ± 13 149 ± 14 0.15 [-0.23, 0.48] -14 (-43, 15)

HF
Neurokit 84 ± 26 132 ± 19 0.8** [0.43, 0.94] -48 (-86, -9)

ECGdeli 149 ± 18 156 ± 9 0.1 [-0.5, 0.64] -6 (-42, 29)

QRS Area

(µVS)

healthy
Neurokit 13.79 ± 14.59 3.25 ± 5.76 -0.27 [-0.64, 0.2] 10.54 (-22.74, 43.81)

ECGdeli 10.19 ± 12.17 3.81 ± 6.77 -0.2 [-0.66, 0.37] 6.37 (-22.73, 35.48)

HF
Neurokit 5.27 ± 24.58 17.27 ± 10.23 -0.02 [-0.61, 0.59] -12.0 (-68.95, 44.94)

ECGdeli -1.96 ± 31.31 12.87 ± 13.58 0.41 [-0.22, 0.79] -14.83 (-73.07, 43.41)

QRS Duration

(ms))

healthy
Neurokit 113 ± 16 131 ± 24 0.55* [0.14, 0.8] -18 (-57, 21)

ECGdeli 126 ± 13 140 ± 25 0.56* [0.04, 0.84] -14 (-51, 23)

HF
Neurokit 126 ± 26 147 ± 44 0.91*** [0.68, 0.98] -21 (-70, 28)

ECGdeli 138 ± 15 156 ± 30 0.84*** [0.51, 0.95] -17 (-51, 17)

QT Duration

(ms)

healthy
Neurokit 398 ± 37 413 ± 24 0.63** [0.25, 0.84] -15 (-80, 49)

ECGdeli 423 ± 39 426 ± 41 0.07 [-0.5, 0.6] -3 (-123, 117)

HF
Neurokit 437 ± 47 457 ± 49 0.63* [0.04, 0.89] -20 (-84, 44)

ECGdeli 454 ± 35 462 ± 46 0.45 [-0.16, 0.82] -7 (-90, 76)
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Table B.3 Continued

Parameter

(Unit)
Condition Algorithm Nexus ECG Apple Watch ECG

Correlation Coefficient

{[95%CI Interval]}
Bias (95% LoA)

QTc Duration

(ms)

healthy
Neurokit 423 ± 29 455 ± 43 0.59** [0.19, 0.83] -32 (-108, 44)

ECGdeli 441 ± 20 450 ± 63 0.36 [-0.24, 0.76] -9 (-129, 111)

HF
Neurokit 444 ± 37 464 ± 43 0.7* [0.17, 0.92] -20 (-84, 44)

ECGdeli 472 ± 20 479 ± 41 0.15 [-0.47, 0.66] -7 (-89, 75)

R Amplitude

(µV)

healthy
Neurokit 1056 ± 469 302 ± 171 -0.26 [-0.56, 0.12] 754 (-301, 1810)

ECGdeli 975 ± 692 243 ± 271 -0.21 [-0.53, 0.16] 732 (-842, 2307)

HF
Neurokit 631 ± 418 574 ± 200 0.12 [-0.49, 0.65] 57 (-766, 879)

ECGdeli 314 ± 858 532 ± 304 0.22 [-0.41, 0.7] -219 (-1718, 1281)

TWA

(µV)

healthy
Neurokit 74.24 ± 82.63 274.69 ± 404.35 -0.05 [-0.4, 0.32] -200.45 (-1026.46, 625.56)

ECGdeli 75.7 ± 90.23 209.39 ± 327.34 -0.05 [-0.44, 0.35] -133.69 (-798.04, 530.65)

HF
Neurokit 61.92 ± 55.71 430.85 ± 452.98 -0.17 [-0.7, 0.48] -368.93 (-1280.19, 542.32)

ECGdeli 74.73 ± 57.81 420.39 ± 421.14 -0.12 [-0.69, 0.55] -345.66 (-1194.46, 503.14)

T Amplitude(µV)

healthy
Neurokit 399 ± 167 154 ± 71 0.52** [0.2, 0.74] 245 (-27, 518)

ECGdeli 399 ± 167 148 ± 75 0.51** [0.18, 0.73] 251 (-21, 523)

HF
Neurokit 210 ± 105 131 ± 79 0.35 [-0.31, 0.79] 79 (-136, 294)

ECGdeli 236 ± 134 110 ± 97 0.45 [-0.17, 0.81] 127 (-126, 379)

T Asymmetry

(n.u)

healthy
Neurokit 0.03 ± 0.03 0.03 ± 0.03 0.47** [0.13, 0.71] -0.0 (-0.06, 0.05)

ECGdeli 0.0 ± 0.01 0.04 ± 0.09 0.04 [-0.32, 0.4] -0.04 (-0.23, 0.14)

HF
Neurokit 0.07 ± 0.03 0.02 ± 0.02 0.71* [0.19, 0.92] 0.05 (-0.01, 0.11)

ECGdeli 0.01 ± 0.02 0.02 ± 0.04 0.2 [-0.42, 0.69] -0.01 (-0.09, 0.07)

T Duration

(ms)

healthy
Neurokit 135 ± 20 163 ± 19 0.35 [-0.02, 0.63] -28 (-71, 15)

ECGdeli 201 ± 23 217 ± 25 0.12 [-0.25, 0.46] -16 (-78, 45)

HF
Neurokit 136 ± 25 173 ± 30 0.91*** [0.68, 0.98] -37 (-72, -3)

ECGdeli 227 ± 16 210 ± 19 0.29 [-0.34, 0.74] 17 (-20, 54)

T Flatness

(n.u)

healthy
Neurokit -0.77 ± 0.18 -0.91 ± 0.32 0.45* [0.11, 0.7] 0.14 (-0.42, 0.7)

ECGdeli -0.69 ± 0.12 -0.84 ± 0.37 0.74*** [0.52, 0.87] 0.15 (-0.39, 0.7)

HF
Neurokit -0.9 ± 0.13 -1.01 ± 0.38 0.28 [-0.38, 0.75] 0.11 (-0.66, 0.88)

ECGdeli -0.81 ± 0.19 -0.86 ± 0.23 0.19 [-0.43, 0.69] 0.05 (-0.45, 0.55)
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Table B.4: Electrocardiagram characteristics of the Withings Scanwatch and Nexus Recording
for healthy and HF participants. Mean ±standard deviation, Spearman correlation coefficient
and Bland-Altman analysis (bias, LoA). P-values for significance of correlation: *p < 0.05,
***p < 0.01, ***p < 0.001.

Parameter

(Unit)
Condition Algorithm Nexus ECG Withings ECG

Correlation Coefficient

[95%CI Interval]
Bias (95% LoA)

HR

(bpm)

healthy
Neurokit 70 ± 11 71 ± 10 0.7*** [0.47, 0.84] -2 (-18, 14)

ECGdeli 68 ± 10 71 ± 9 0.82*** [0.67, 0.91] -2 (-15, 10)

HF
Neurokit 67 ± 16 66 ± 13 0.89*** [0.69, 0.97] 1 (-11, 14)

ECGdeli 67 ± 16 72 ± 21 0.62* [0.13, 0.86] -5 (-37, 27)

HRV HF

(ms2)

healthy
Neurokit 0.06 ± 0.03 0.07 ± 0.04 0.43* [0.11, 0.67] -0.01 (-0.08, 0.06)

ECGdeli 0.06 ± 0.03 0.07 ± 0.03 0.32 [-0.02, 0.59] -0.01 (-0.08, 0.07)

HF
Neurokit 0.06 ± 0.03 0.06 ± 0.02 0.13 [-0.43, 0.62] 0.0 (-0.06, 0.06)

ECGdeli 0.08 ± 0.04 0.08 ± 0.05 0.58* [0.07, 0.85] -0.0 (-0.08, 0.07)

HRV HFn

(n.u)

healthy
Neurokit 0.77 ± 0.15 0.81 ± 0.11 0.13 [-0.22, 0.45] -0.04 (-0.33, 0.24)

ECGdeli 0.75 ± 0.14 0.78 ± 0.13 0.59*** [0.31, 0.77] -0.03 (-0.29, 0.22)

HF
Neurokit 0.75 ± 0.15 0.83 ± 0.05 0.38 [-0.18, 0.76] -0.08 (-0.37, 0.2)

ECGdeli 0.75 ± 0.13 0.79 ± 0.12 0.5 [-0.04, 0.81] -0.04 (-0.2, 0.13)

HRV HTI

(n.u)

healthy
Neurokit 6.71 ± 2.7 6.32 ± 2.99 0.82*** [0.67, 0.91] 0.39 (-3.9, 4.68)

ECGdeli 6.77 ± 2.92 6.24 ± 2.7 0.78*** [0.6, 0.88] 0.53 (-3.94, 4.99)

HF
Neurokit 5.2 ± 3.46 5.34 ± 2.68 0.58* [0.07, 0.85] -0.14 (-5.01, 4.74)

ECGdeli 4.77 ± 2.7 5.35 ± 2.84 0.64* [0.17, 0.88] -0.59 (-4.43, 3.26)

HRv LF/HF

(n.u)

healthy
Neurokit 0.3 ± 0.55 0.12 ± 0.22 0.38* [0.04, 0.64] 0.15 (-0.53, 0.84)

ECGdeli 0.3 ± 0.55 0.1 ± 0.13 0.24 [-0.11, 0.53] 0.2 (-0.69, 1.1)

HF
Neurokit 0.27 ± 0.32 0.1 ± 0.08 0.53 [-0.03, 0.84] 0.17 (-0.45, 0.79)

ECGdeli 0.25 ± 0.26 0.16 ± 0.3 0.73** [0.3, 0.91] 0.08 (-0.26, 0.43)

HRV LF

(ms2)

healthy
Neurokit 0.01 ± 0.01 0.01 ± 0.0 0.07 [-0.28, 0.41] 0.0 (-0.01, 0.02)

ECGdeli 0.01 ± 0.01 0.0 ± 0.0 0.06 [-0.28, 0.39] 0.0 (-0.01, 0.02)

HF
Neurokit 0.01 ± 0.01 0.01 ± 0.0 0.57* [0.03, 0.85] 0.01 (-0.01, 0.02)

ECGdeli 0.01 ± 0.01 0.01 ± 0.0 0.5 [-0.07, 0.82] 0.01 (-0.0, 0.02)

HRV LFn

(n.u)

healthy
Neurokit 0.16 ± 0.16 0.08 ± 0.11 0.37* [0.04, 0.64] 0.07 (-0.14, 0.28)

ECGdeli 0.16 ± 0.17 0.07 ± 0.08 0.17 [-0.18, 0.48] 0.09 (-0.18, 0.36)

HF
Neurokit 0.16 ± 0.14 0.08 ± 0.06 0.52 [-0.05, 0.83] 0.08 (-0.18, 0.33)

ECGdeli 0.15 ± 0.12 0.1 ± 0.12 0.7** [0.24, 0.9] 0.06 (-0.11, 0.23)

HRV RMSSD

(ms)

healthy
Neurokit 61.61 ± 61.78 84.08 ± 119.24 0.6*** [0.32, 0.78] -22.48 (-209.56, 164.6)

ECGdeli 66.74 ± 61.93 166.6 ± 189.79 0.26 [-0.09, 0.55] -99.86 (-474.88, 275.17)

HF
Neurokit 48.79 ± 43.36 99.25 ± 129.23 0.13 [-0.43, 0.62] -50.46 (-329.62, 228.7)

ECGdeli 76.27 ± 69.29 109.87 ± 109.05 0.02 [-0.52, 0.54] -33.6 (-294.16, 226.96)

HRV SDNN

(ms)

healthy
Neurokit 57.51 ± 50.26 71.43 ± 91.89 0.73*** [0.52, 0.86] -13.92 (-142.0, 114.15)

ECGdeli 56.31 ± 40.96 133.12 ± 154.68 0.34 [-0.0, 0.61] -76.81 (-372.91, 219.29)

HF
Neurokit 43.99 ± 37.81 97.0 ± 111.4 0.02 [-0.51, 0.55] -53.0 (-293.09, 187.08)

ECGdeli 59.36 ± 48.12 90.85 ± 83.05 -0.09 [-0.6, 0.46] -31.48 (-231.92, 168.95)
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Table B.4 Continued

Parameter

(Unit)
Condition Algorithm Nexus ECG Withings ECG

Correlation Coefficient

[95%CI Interval]
Bias (95% LoA)

HRV SDSD

(ms)

healthy
Neurokit 62.41 ± 62.61 85.24 ± 121.13 0.6*** [0.32, 0.78] -22.82 (-212.9, 167.25)

ECGdeli 67.71 ± 62.86 168.73 ± 192.24 0.25 [-0.1, 0.54] -101.02 (-480.64, 278.6)

HF
Neurokit 49.46 ± 43.99 100.48 ± 131.19 0.14 [-0.42, 0.63] -51.02 (-334.32, 232.28)

ECGdeli 77.37 ± 70.29 111.0 ± 110.22 -0.01 [-0.54, 0.53] -33.62 (-296.95, 229.7)

HRV pNN50

(%)

healthy
Neurokit 19.08 ± 23.33 20.26 ± 27.55 0.64*** [0.38, 0.8] -1.18 (-27.41, 25.06)

ECGdeli 16.68 ± 21.58 22.92 ± 26.16 0.49** [0.19, 0.71] -6.25 (-36.06, 23.57)

HF
Neurokit 21.84 ± 26.14 25.12 ± 27.0 0.55* [0.03, 0.84] -3.28 (-43.63, 37.07)

ECGdeli 23.38 ± 25.51 27.27 ± 27.94 0.44 [-0.12, 0.79] -3.88 (-51.74, 43.98)

HRV total power

(ms2)

healthy
Neurokit 0.07 ± 0.03 0.08 ± 0.04 0.28 [-0.07, 0.57] -0.0 (-0.08, 0.07)

ECGdeli 0.07 ± 0.03 0.07 ± 0.03 0.25 [-0.1, 0.54] -0.0 (-0.08, 0.08)

HF
Neurokit 0.07 ± 0.03 0.07 ± 0.02 0.12 [-0.46, 0.63] 0.01 (-0.06, 0.07)

ECGdeli 0.09 ± 0.04 0.09 ± 0.05 0.59* [0.06, 0.86] 0.0 (-0.08, 0.08)

PR Duration

(ms)

healthy
Neurokit 154 ± 40 129 ± 25 0.37 [-0.04, 0.68] 25 (-59, 108)

ECGdeli 164 ± 23 183 ± 28 0.39 [-0.05, 0.7] -20 (-74, 34)

HF
Neurokit 177 ± 39 160 ± 35 0.36 [-0.21, 0.75] 16 (-65, 98)

ECGdeli 188 ± 42 203 ± 28 0.52 [-0.01, 0.82] -15 (-91, 60)

P Amplitude

(µA)

healthy
Neurokit 60 ± 91 38 ± 18 0.18 [-0.16, 0.49] 22 (-152, 196)

ECGdeli 57 ± 103 25 ± 20 0.08 [-0.26, 0.41] 32 (-170, 235)

HF
Neurokit 30 ± 44 31 ± 14 0.2 [-0.37, 0.66] -1 (-90, 88)

ECGdeli 15 ± 42 15 ± 25 -0.04 [-0.56, 0.5] 0 (-90, 90)

P Duration

(ms)

healthy
Neurokit 94 ± 18 73 ± 13 0.18 [-0.17, 0.48] 21 (-17, 58)

ECGdeli 134 ± 10 155 ± 15 0.16 [-0.19, 0.47] -21 (-53, 11)

HF
Neurokit 90 ± 23 78 ± 14 0.76** [0.38, 0.92] 12 (-22, 46)

ECGdeli 146 ± 15 164 ± 21 0.48 [-0.07, 0.81] -18 (-53, 18)

QRS Area

(µVS)

healthy
Neurokit 10.77 ± 14.46 3.64 ± 5.76 -0.48* [-0.75, -0.09] 7.13 (-25.93, 40.2)

ECGdeli 8.92 ± 14.95 2.17 ± 5.4 0.04 [-0.39, 0.45] 6.75 (-24.65, 38.16)

HF
Neurokit 2.47 ± 22.94 11.36 ± 4.39 0.24 [-0.39, 0.71] -8.88 (-53.33, 35.57)

ECGdeli -8.46 ± 33.24 8.12 ± 9.04 0.5 [-0.04, 0.81] -16.58 (-72.18, 39.01)

QRS Duration

(ms))

healthy
Neurokit 119 ± 20 133 ± 28 0.39 [-0.02, 0.69] -14 (-75, 47)

ECGdeli 125 ± 13 138 ± 18 0.44* [0.03, 0.73] -13 (-45, 19)

HF
Neurokit 129 ± 22 146 ± 33 0.43 [-0.19, 0.81] -17 (-66, 32)

ECGdeli 140 ± 16 159 ± 25 0.66** [0.2, 0.88] -19 (-44, 6)

QT Duration

(ms)

healthy
Neurokit 408 ± 33 386 ± 36 0.6** [0.25, 0.82] 22 (-43, 88)

ECGdeli 424 ± 32 410 ± 41 0.41 [-0.02, 0.71] 14 (-74, 103)

HF
Neurokit 449 ± 53 439 ± 51 0.7* [0.21, 0.91] 10 (-77, 98)

ECGdeli 450 ± 45 431 ± 57 0.12 [-0.44, 0.61] 18 (-107, 143)
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Table B.4 Continued

Parameter

(Unit)
Condition Algorithm Nexus ECG Withings ECG

Correlation Coefficient

{[95%CI Interval]}
Bias (95% LoA)

QTc Duration

(ms)

healthy
Neurokit 436 ± 35 423 ± 50 0.6** [0.24, 0.82] 13 (-73, 98)

ECGdeli 448 ± 21 440 ± 42 0.51* [0.12, 0.77] 9 (-65, 82)

HF
Neurokit 450 ± 42 439 ± 41 0.6* [0.04, 0.87] 11 (-78, 101)

ECGdeli 467 ± 25 458 ± 46 -0.05 [-0.57, 0.49] 9 (-92, 111)

R Amplitude

(µV)

healthy
Neurokit 984 ± 456 260 ± 139 -0.28 [-0.57, 0.06] 724 (-287, 1735)

ECGdeli 903 ± 680 206 ± 208 -0.27 [-0.56, 0.07] 697 (-786, 2179)

HF
Neurokit 536 ± 359 410 ± 200 0.59* [0.09, 0.85] 125 (-413, 663)

ECGdeli 111 ± 898 373 ± 275 0.68** [0.23, 0.89] -262 (-1610, 1087)

TWA

(µV)

healthy
Neurokit 97.41 ± 123.2 467.4 ± 740.88 0.07 [-0.28, 0.4] -369.99 (-1809.38, 1069.4)

ECGdeli 86.35 ± 118.51 144.47 ± 177.81 -0.15 [-0.52, 0.27] -58.12 (-481.66, 365.42)

HF
Neurokit 41.71 ± 13.14 286.6 ± 289.76 0.29 [-0.34, 0.74] -244.89 (-800.18, 310.4)

ECGdeli 49.44 ± 19.12 324.07 ± 372.7 0.19 [-0.5, 0.73] -274.63 (-1004.29, 455.03)

T Amplitude(µV)

healthy
Neurokit 376 ± 188 118 ± 58 0.47** [0.16, 0.7] 258 (-69, 585)

ECGdeli 369 ± 188 92 ± 67 0.35* [0.01, 0.62] 277 (-68, 622)

HF
Neurokit 193 ± 91 101 ± 50 0.29 [-0.34, 0.74] 92 (-73, 257)

ECGdeli 250 ± 165 76 ± 62 0.62* [0.13, 0.86] 174 (-103, 452)

T Asymmetry

(n.u)

healthy
Neurokit 0.02 ± 0.02 0.1 ± 0.04 0.18 [-0.17, 0.49] -0.08 (-0.16, 0.0)

ECGdeli 0.0 ± 0.0 0.05 ± 0.06 -0.23 [-0.53, 0.13] -0.05 (-0.16, 0.06)

HF
Neurokit 0.05 ± 0.03 0.09 ± 0.04 -0.5 [-0.84, 0.1] -0.04 (-0.15, 0.07)

ECGdeli 0.01 ± 0.03 0.05 ± 0.05 -0.16 [-0.64, 0.4] -0.04 (-0.16, 0.08)

T Duration

(ms)

healthy
Neurokit 138 ± 22 109 ± 28 0.35* [0.01, 0.62] 29 (-27, 86)

ECGdeli 207 ± 26 186 ± 16 0.2 [-0.14, 0.51] 21 (-33, 75)

HF
Neurokit 143 ± 16 111 ± 18 -0.34 [-0.77, 0.29] 32 (-25, 90)

ECGdeli 229 ± 30 188 ± 15 0.27 [-0.3, 0.7] 41 (-19, 101)

T Flatness

(n.u)

healthy
Neurokit -0.78 ± 0.17 -1.16 ± 0.19 0.31 [-0.03, 0.58] 0.38 (-0.02, 0.77)

ECGdeli -0.7 ± 0.15 -0.97 ± 0.29 0.48** [0.16, 0.7] 0.27 (-0.28, 0.82)

HF
Neurokit -0.84 ± 0.16 -1.22 ± 0.15 0.15 [-0.47, 0.66] 0.38 (-0.04, 0.8)

ECGdeli -0.73 ± 0.14 -1.16 ± 0.38 0.27 [-0.3, 0.7] 0.43 (-0.32, 1.17)
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Table B.5: Electrocardiagram characteristics of the Apple Watch and Nexus Recording during
resting and recovery phase. Mean ±standard deviation, Spearman correlation coefficient
and Bland-Altman analysis (bias, LoA). P-values for significance of correlation: *p < 0.05,
***p < 0.01, ***p < 0.001.

Parameter

(Unit)

Recording

Phase
Algorithm Nexus ECG Apple Watch ECG

Correlation Coefficient

[95%CI Interval]
Bias (95% LoA)

HR

(bpm)

Rest
Neurokit 67 ± 12 70 ± 14 0.71*** [0.4, 0.87] -3 (-30, 24)

ECGdeli 67 ± 11 69 ± 11 0.82*** [0.59, 0.92] -2 (-13, 10)

Recovery
Neurokit 71 ± 11 74 ± 14 0.7*** [0.39, 0.87] -3 (-30, 25)

ECGdeli 71 ± 11 71 ± 10 0.98*** [0.94, 0.99] -1 (-5, 4)

HRV HF

(ms2)

Rest
Neurokit 0.06 ± 0.03 0.07 ± 0.04 0.42 [-0.01, 0.72] -0.01 (-0.09, 0.08)

ECGdeli 0.06 ± 0.04 0.06 ± 0.04 0.51* [0.1, 0.77] -0.0 (-0.06, 0.06)

Recovery
Neurokit 0.06 ± 0.03 0.06 ± 0.03 0.65** [0.3, 0.84] 0.0 (-0.05, 0.06)

ECGdeli 0.07 ± 0.05 0.08 ± 0.05 0.33 [-0.12, 0.67] -0.0 (-0.1, 0.1)

HRV HFn

(n.u)

Rest
Neurokit 0.8 ± 0.13 0.81 ± 0.09 0.54* [0.14, 0.79] -0.0 (-0.22, 0.21)

ECGdeli 0.8 ± 0.13 0.82 ± 0.09 0.63** [0.27, 0.83] -0.02 (-0.2, 0.15)

Recovery
Neurokit 0.78 ± 0.17 0.81 ± 0.12 0.52* [0.12, 0.78] -0.03 (-0.3, 0.24)

ECGdeli 0.77 ± 0.14 0.81 ± 0.11 0.15 [-0.3, 0.54] -0.04 (-0.38, 0.31)

HRV HTI

(n.u)

Rest
Neurokit 6.34 ± 2.02 6.73 ± 2.58 0.79*** [0.55, 0.91] -0.39 (-5.0, 4.22)

ECGdeli 6.84 ± 2.39 6.47 ± 1.93 0.87*** [0.7, 0.95] 0.37 (-1.98, 2.71)

Recovery
Neurokit 5.78 ± 2.73 5.09 ± 2.3 0.87*** [0.7, 0.95] 0.69 (-2.42, 3.8)

ECGdeli 5.63 ± 2.67 5.43 ± 2.61 0.92*** [0.82, 0.97] 0.2 (-1.7, 2.09)

HRv LF/HF

(n.u)

Rest
Neurokit 0.21 ± 0.28 0.14 ± 0.15 0.59** [0.18, 0.82] 0.07 (-0.35, 0.48)

ECGdeli 0.2 ± 0.27 0.14 ± 0.14 0.69** [0.35, 0.87] 0.06 (-0.3, 0.42)

Recovery
Neurokit 0.31 ± 0.49 0.16 ± 0.27 0.46* [0.02, 0.75] 0.15 (-0.81, 1.1)

ECGdeli 0.24 ± 0.46 0.16 ± 0.28 0.25 [-0.22, 0.62] 0.08 (-1.02, 1.18)

HRV LF

(ms2)

Rest
Neurokit 0.01 ± 0.0 0.01 ± 0.0 0.15 [-0.32, 0.57] -0.0 (-0.01, 0.01)

ECGdeli 0.01 ± 0.01 0.01 ± 0.0 0.57* [0.16, 0.81] 0.0 (-0.01, 0.01)

Recovery
Neurokit 0.01 ± 0.01 0.01 ± 0.0 0.41 [-0.04, 0.72] 0.0 (-0.01, 0.02)

ECGdeli 0.01 ± 0.01 0.01 ± 0.0 0.47* [0.03, 0.75] 0.0 (-0.01, 0.01)

HRV LFn

(n.u)

Rest
Neurokit 0.14 ± 0.15 0.1 ± 0.1 0.54* [0.12, 0.8] 0.03 (-0.2, 0.25)

ECGdeli 0.13 ± 0.14 0.1 ± 0.09 0.64** [0.26, 0.85] 0.02 (-0.17, 0.22)

Recovery
Neurokit 0.17 ± 0.17 0.11 ± 0.13 0.47* [0.04, 0.76] 0.06 (-0.26, 0.38)

ECGdeli 0.13 ± 0.16 0.1 ± 0.13 0.24 [-0.23, 0.62] 0.03 (-0.38, 0.43)

HRV RMSSD

(ms)

Rest
Neurokit 50.12 ± 30.31 81.46 ± 97.78 0.56** [0.17, 0.8] -31.34 (-208.82, 146.14)

ECGdeli 57.78 ± 40.04 92.56 ± 127.39 0.63** [0.27, 0.83] -34.78 (-265.1, 195.55)

Recovery
Neurokit 36.42 ± 35.79 46.65 ± 112.36 0.73*** [0.44, 0.89] -10.24 (-178.3, 157.83)

ECGdeli 51.95 ± 52.68 63.98 ± 91.45 0.51* [0.1, 0.77] -12.03 (-179.58, 155.52)

HRV SDNN

(ms)

Rest
Neurokit 48.1 ± 23.86 72.79 ± 61.93 0.44* [0.01, 0.73] -24.69 (-143.36, 93.98)

ECGdeli 51.53 ± 28.23 80.62 ± 88.87 0.57** [0.18, 0.8] -29.09 (-194.38, 136.2)

Recovery
Neurokit 42.84 ± 38.82 42.61 ± 63.01 0.86*** [0.68, 0.94] 0.24 (-66.11, 66.58)

ECGdeli 50.52 ± 44.81 64.01 ± 73.8 0.47* [0.05, 0.75] -13.49 (-140.84, 113.86)
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Table B.5 Continued

Parameter

(Unit)

Recording

Phase
Algorithm Nexus ECG Apple Watch ECG

Correlation Coefficient

[95%CI Interval]
Bias (95% LoA)

HRV SDSD

(ms)

Rest
Neurokit 50.87 ± 30.86 82.25 ± 98.73 0.56** [0.17, 0.8] -31.38 (-210.23, 147.47)

ECGdeli 58.65 ± 40.71 94.08 ± 129.84 0.63** [0.27, 0.83] -35.43 (-269.94, 199.08)

Recovery
Neurokit 36.9 ± 36.31 47.22 ± 113.69 0.72*** [0.42, 0.88] -10.32 (-180.33, 159.69)

ECGdeli 52.7 ± 53.51 64.88 ± 93.17 0.52* [0.11, 0.78] -12.18 (-182.57, 158.2)

HRV pNN50

(%)

Rest
Neurokit 26.03 ± 23.03 23.6 ± 25.94 0.88*** [0.72, 0.95] 2.43 (-19.39, 24.25)

ECGdeli 25.4 ± 24.28 26.42 ± 26.79 0.95*** [0.87, 0.98] -1.02 (-15.54, 13.49)

Recovery
Neurokit 10.67 ± 15.9 9.91 ± 22.55 0.75*** [0.47, 0.89] 0.76 (-21.9, 23.42)

ECGdeli 10.96 ± 16.26 9.67 ± 16.74 0.62** [0.26, 0.83] 1.29 (-13.68, 16.26)

HRV total power

(ms2)

Rest
Neurokit 0.06 ± 0.03 0.07 ± 0.04 0.51* [0.07, 0.78] -0.01 (-0.09, 0.07)

ECGdeli 0.07 ± 0.04 0.07 ± 0.04 0.58** [0.17, 0.82] -0.01 (-0.06, 0.05)

Recovery
Neurokit 0.07 ± 0.03 0.06 ± 0.03 0.74*** [0.44, 0.89] 0.0 (-0.04, 0.05)

ECGdeli 0.08 ± 0.05 0.08 ± 0.05 0.35 [-0.11, 0.69] -0.0 (-0.1, 0.1)

PR Duration

(ms)

Rest
Neurokit 155 ± 37 174 ± 29 0.12 [-0.39, 0.56] -19 (-108, 71)

ECGdeli 165 ± 29 168 ± 30 0.88*** [0.65, 0.97] -2 (-38, 33)

Recovery
Neurokit 158 ± 38 177 ± 31 0.12 [-0.47, 0.63] -18 (-113, 76)

ECGdeli 177 ± 36 172 ± 34 0.69* [0.2, 0.91] 5 (-50, 59)

P Amplitude

(µA)

Rest
Neurokit 43 ± 83 2 ± 24 0.4 [-0.04, 0.71] 41 (-109, 190)

ECGdeli 34 ± 85 1 ± 30 0.54* [0.13, 0.79] 33 (-121, 187)

Recovery
Neurokit 58 ± 92 10 ± 19 0.54* [0.15, 0.79] 48 (-113, 208)

ECGdeli 34 ± 109 3 ± 28 0.18 [-0.27, 0.57] 30 (-180, 240)

P Duration

(ms)

Rest
Neurokit 92 ± 17 130 ± 17 0.27 [-0.2, 0.64] -38 (-78, 1)

ECGdeli 136 ± 14 150 ± 11 0.53* [0.13, 0.78] -13 (-38, 11)

Recovery
Neurokit 87 ± 24 129 ± 18 0.31 [-0.14, 0.65] -42 (-88, 4)

ECGdeli 142 ± 17 152 ± 15 0.06 [-0.38, 0.48] -10 (-48, 27)

QRS Area

(µVS)

Rest
Neurokit 12.09 ± 17.26 6.84 ± 9.74 -0.09 [-0.55, 0.41] 5.24 (-36.51, 46.99)

ECGdeli 5.65 ± 26.78 5.19 ± 10.28 0.34 [-0.24, 0.74] 0.46 (-43.94, 44.87)

Recovery
Neurokit 9.16 ± 21.19 9.9 ± 10.43 -0.3 [-0.72, 0.27] -0.74 (-54.85, 53.36)

ECGdeli 3.33 ± 19.83 11.26 ± 11.8 -0.21 [-0.7, 0.41] -7.93 (-61.45, 45.58)

QRS Duration

(ms))

Rest
Neurokit 116 ± 23 133 ± 29 0.67** [0.28, 0.87] -17 (-52, 18)

ECGdeli 130 ± 15 145 ± 25 0.71** [0.29, 0.9] -15 (-47, 18)

Recovery
Neurokit 120 ± 20 141 ± 38 0.76** [0.38, 0.92] -21 (-73, 30)

ECGdeli 133 ± 16 150 ± 32 0.83*** [0.48, 0.95] -16 (-56, 23)

QT Duration

(ms)

Rest
Neurokit 410 ± 37 428 ± 32 0.77*** [0.44, 0.92] -19 (-61, 24)

ECGdeli 439 ± 39 431 ± 30 0.52 [-0.05, 0.83] 8 (-65, 81)

Recovery
Neurokit 415 ± 54 430 ± 50 0.6* [0.1, 0.86] -16 (-98, 67)

ECGdeli 437 ± 40 457 ± 57 0.29 [-0.34, 0.74] -19 (-143, 104)
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Table B.5 Continued

Parameter

(Unit)

Recording

Phase
Algorithm Nexus ECG Apple Watch

Correlation Coefficient

[95%CI Interval]
Bias (95% LoA)

QTc Duration

(ms)

Rest
Neurokit 426 ± 32 446 ± 32 0.65** [0.23, 0.87] -20 (-68, 28)

ECGdeli 454 ± 30 448 ± 41 0.54 [-0.01, 0.84] 5 (-59, 70)

Recovery
Neurokit 436 ± 35 472 ± 50 0.49 [-0.05, 0.81] -36 (-126, 55)

ECGdeli 458 ± 20 481 ± 64 0.1 [-0.5, 0.64] -23 (-150, 104)

R Amplitude

(µV)

Rest
Neurokit 946 ± 472 386 ± 225 -0.27 [-0.63, 0.18] 560 (-575, 1695)

ECGdeli 801 ± 801 302 ± 340 -0.2 [-0.58, 0.25] 499 (-1231, 2229)

Recovery
Neurokit 924 ± 515 374 ± 210 -0.26 [-0.62, 0.19] 550 (-655, 1755)

ECGdeli 771 ± 800 349 ± 274 -0.25 [-0.62, 0.2] 422 (-1378, 2222)

TWA

(µV)

Rest
Neurokit 47.94 ± 24.71 457.1 ± 517.07 0.09 [-0.37, 0.51] -409.16 (-1421.6, 603.27)

ECGdeli 52.87 ± 31.98 412.92 ± 473.4 0.22 [-0.3, 0.63] -360.05 (-1271.81, 551.71)

Recovery
Neurokit 92.83 ± 99.37 182.76 ± 243.02 0.03 [-0.4, 0.46] -89.93 (-623.11, 443.25)

ECGdeli 96.72 ± 106.13 134.39 ± 125.22 0.04 [-0.43, 0.5] -37.67 (-358.14, 282.79)

T Amplitude

(µV)

Rest
Neurokit 380 ± 193 170 ± 70 0.59** [0.2, 0.82] 210 (-103, 523)

ECGdeli 387 ± 192 149 ± 93 0.57** [0.18, 0.8] 238 (-55, 532)

Recovery
Neurokit 319 ± 148 127 ± 71 0.28 [-0.17, 0.64] 192 (-85, 469)

ECGdeli 318 ± 147 126 ± 72 0.33 [-0.12, 0.67] 193 (-84, 469)

T Asymmetry

(n.u)

Rest
Neurokit 0.03 ± 0.03 0.02 ± 0.02 0.15 [-0.32, 0.55] 0.0 (-0.06, 0.06)

ECGdeli 0.0 ± 0.01 0.03 ± 0.07 0.07 [-0.37, 0.49] -0.02 (-0.17, 0.12)

Recovery
Neurokit 0.04 ± 0.04 0.03 ± 0.03 0.34 [-0.11, 0.67] 0.02 (-0.06, 0.09)

ECGdeli 0.01 ± 0.02 0.04 ± 0.09 0.02 [-0.42, 0.44] -0.04 (-0.22, 0.14)

T Duration

(ms)

Rest
Neurokit 138 ± 26 163 ± 26 0.61** [0.23, 0.83] -26 (-69, 17)

ECGdeli 210 ± 23 214 ± 24 0.18 [-0.27, 0.57] -4 (-58, 51)

Recovery
Neurokit 132 ± 16 167 ± 20 0.51* [0.1, 0.77] -35 (-73, 3)

ECGdeli 207 ± 26 216 ± 23 -0.11 [-0.52, 0.34] -10 (-80, 60)

T Flatness

(n.u)

Rest
Neurokit -0.79 ± 0.13 -0.93 ± 0.24 0.24 [-0.23, 0.62] 0.14 (-0.33, 0.61)

ECGdeli -0.73 ± 0.18 -0.82 ± 0.26 0.6** [0.23, 0.82] 0.1 (-0.24, 0.43)

Recovery
Neurokit -0.82 ± 0.21 -0.94 ± 0.4 0.39 [-0.05, 0.7] 0.13 (-0.62, 0.87)

ECGdeli -0.71 ± 0.12 -0.86 ± 0.4 0.62** [0.26, 0.83] 0.15 (-0.54, 0.84)
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Table B.6: Electrocardiagram characteristics of the Withings Scanwatch and Nexus Record-
ing during resting and recovery phase. Mean ±standard deviation, Spearman correlation
coefficient and Bland-Altman analysis (bias, LoA). P-values for significance of correlation:
*p < 0.05, ***p < 0.01, ***p < 0.001.

Parameter

(Unit)

Recording

Phase
Algorithm Nexus ECG Withings ECG

Correlation Coefficient

[95%CI Interval]
Bias (95% LoA)

HR

(bpm)

Rest
Neurokit 68 ± 12 69 ± 12 0.78*** [0.56, 0.9] -1 (-15, 12)

ECGdeli 66 ± 10 68 ± 10 0.86*** [0.71, 0.94] -2 (-12, 8)

Recovery
Neurokit 70 ± 13 71 ± 10 0.78*** [0.54, 0.9] 0 (-18, 17)

ECGdeli 70 ± 13 75 ± 16 0.68*** [0.37, 0.85] -4 (-31, 23)

HRV HF

(ms2)

Rest
Neurokit 0.06 ± 0.02 0.06 ± 0.03 0.39 [-0.01, 0.68] -0.0 (-0.06, 0.06)

ECGdeli 0.07 ± 0.03 0.07 ± 0.04 0.27 [-0.14, 0.6] -0.0 (-0.08, 0.08)

Recovery
Neurokit 0.06 ± 0.04 0.07 ± 0.03 0.41* [0.0, 0.71] -0.01 (-0.08, 0.06)

ECGdeli 0.07 ± 0.04 0.08 ± 0.04 0.6** [0.25, 0.81] -0.01 (-0.08, 0.06)

HRV HFn

(n.u)

Rest
Neurokit 0.78 ± 0.13 0.83 ± 0.08 0.07 [-0.33, 0.45] -0.05 (-0.34, 0.24)

ECGdeli 0.77 ± 0.12 0.8 ± 0.15 0.74*** [0.49, 0.88] -0.02 (-0.19, 0.15)

Recovery
Neurokit 0.74 ± 0.17 0.8 ± 0.11 0.29 [-0.14, 0.63] -0.06 (-0.34, 0.23)

ECGdeli 0.73 ± 0.15 0.77 ± 0.11 0.3 [-0.13, 0.63] -0.05 (-0.33, 0.24)

HRV HTI

(n.u)

Rest
Neurokit 6.45 ± 3.19 6.05 ± 3.32 0.89*** [0.77, 0.95] 0.4 (-4.33, 5.13)

ECGdeli 6.25 ± 2.93 6.06 ± 2.92 0.8*** [0.59, 0.91] 0.19 (-4.08, 4.47)

Recovery
Neurokit 6.08 ± 2.8 6.02 ± 2.47 0.69*** [0.39, 0.86] 0.07 (-4.13, 4.26)

ECGdeli 6.11 ± 3.08 5.9 ± 2.6 0.71*** [0.43, 0.87] 0.21 (-4.33, 4.76)

HRV LF/HF

(n.u)

Rest
Neurokit 0.22 ± 0.25 0.09 ± 0.1 0.37 [-0.03, 0.67] 0.12 (-0.38, 0.62)

ECGdeli 0.22 ± 0.25 0.12 ± 0.24 0.6** [0.26, 0.8] 0.1 (-0.25, 0.46)

Recovery
Neurokit 0.38 ± 0.66 0.14 ± 0.26 0.54* [0.14, 0.79] 0.2 (-0.61, 1.02)

ECGdeli 0.36 ± 0.65 0.12 ± 0.14 0.11 [-0.33, 0.5] 0.25 (-0.82, 1.31)

HRV LF

(ms2)

Rest
Neurokit 0.01 ± 0.01 0.01 ± 0.0 0.25 [-0.16, 0.59] 0.01 (-0.01, 0.02)

ECGdeli 0.01 ± 0.01 0.0 ± 0.0 0.48* [0.11, 0.74] 0.01 (-0.0, 0.02)

Recovery
Neurokit 0.01 ± 0.01 0.01 ± 0.0 0.14 [-0.31, 0.54] 0.0 (-0.01, 0.02)

ECGdeli 0.01 ± 0.01 0.01 ± 0.0 -0.21 [-0.58, 0.23] 0.0 (-0.01, 0.02)

HRV LFn

(n.u)

Rest
Neurokit 0.14 ± 0.12 0.07 ± 0.07 0.37 [-0.03, 0.67] 0.07 (-0.17, 0.3)

ECGdeli 0.14 ± 0.13 0.07 ± 0.11 0.51** [0.15, 0.76] 0.07 (-0.12, 0.27)

Recovery
Neurokit 0.18 ± 0.18 0.09 ± 0.12 0.53* [0.13, 0.78] 0.08 (-0.13, 0.29)

ECGdeli 0.17 ± 0.18 0.08 ± 0.08 0.03 [-0.4, 0.44] 0.09 (-0.2, 0.39)

HRV RMSSD

(ms)

Rest
Neurokit 66.76 ± 62.65 73.34 ± 100.8 0.72*** [0.45, 0.87] -6.58 (-145.0, 131.83)

ECGdeli 71.54 ± 60.21 115.86 ± 121.42 0.17 [-0.24, 0.53] -44.32 (-313.01, 224.37)

Recovery
Neurokit 48.2 ± 49.12 104.99 ± 140.42 0.23 [-0.2, 0.59] -56.79 (-329.92, 216.34)

ECGdeli 67.33 ± 68.42 187.22 ± 207.84 0.19 [-0.24, 0.56] -119.9 (-528.07, 288.28)

HRV SDNN

(ms)

Rest
Neurokit 57.98 ± 53.22 66.3 ± 83.73 0.8*** [0.6, 0.91] -8.32 (-120.6, 103.96)

ECGdeli 57.38 ± 42.54 96.62 ± 108.14 0.28 [-0.13, 0.61] -39.24 (-265.28, 186.79)

Recovery
Neurokit 48.77 ± 39.5 92.57 ± 111.08 0.25 [-0.18, 0.6] -43.8 (-257.44, 169.83)

ECGdeli 57.01 ± 43.9 147.07 ± 162.18 0.2 [-0.23, 0.56] -90.06 (-401.12, 221.01)
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Table B.6 Continued

Parameter

(Unit)

Recording

Phase
Algorithm Nexus ECG Withings ECG

Correlation Coefficient

[95%CI Interval]
Bias (95% LoA)

HRV SDSD

(ms)

Rest
Neurokit 67.68 ± 63.5 74.21 ± 102.24 0.73*** [0.47, 0.87] -6.53 (-147.07, 134.0)

ECGdeli 72.6 ± 61.13 117.29 ± 122.96 0.19 [-0.22, 0.54] -44.69 (-316.63, 227.25)

Recovery
Neurokit 48.8 ± 49.78 106.49 ± 142.69 0.23 [-0.2, 0.59] -57.69 (-334.96, 219.57)

ECGdeli 68.27 ± 69.41 189.5 ± 210.51 0.17 [-0.26, 0.54] -121.23 (-534.34, 291.89)

HRV pNN50

(%)

Rest
Neurokit 23.78 ± 24.45 22.05 ± 27.9 0.77*** [0.54, 0.89] 1.73 (-23.65, 27.11)

ECGdeli 20.76 ± 23.28 23.51 ± 26.33 0.6** [0.27, 0.8] -2.75 (-32.96, 27.46)

Recovery
Neurokit 15.66 ± 23.24 21.27 ± 27.0 0.54** [0.16, 0.78] -5.61 (-40.37, 29.14)

ECGdeli 16.32 ± 22.47 24.92 ± 27.21 0.46* [0.06, 0.73] -8.6 (-49.32, 32.11)

HRV total power

(ms2)

Rest
Neurokit 0.07 ± 0.02 0.07 ± 0.03 0.13 [-0.28, 0.5] 0.0 (-0.06, 0.07)

ECGdeli 0.08 ± 0.03 0.07 ± 0.04 0.23 [-0.18, 0.57] 0.01 (-0.08, 0.1)

Recovery
Neurokit 0.07 ± 0.04 0.08 ± 0.03 0.39 [-0.06, 0.7] -0.01 (-0.08, 0.07)

ECGdeli 0.08 ± 0.04 0.08 ± 0.04 0.55** [0.17, 0.79] -0.01 (-0.07, 0.06)

PR Duration

(ms)

Rest
Neurokit 167 ± 45 138 ± 33 0.44 [-0.02, 0.74] 29 (-63, 121)

ECGdeli 178 ± 34 195 ± 32 0.72** [0.36, 0.89] -18 (-67, 31)

Recovery
Neurokit 157 ± 36 143 ± 33 0.58* [0.15, 0.82] 14 (-56, 84)

ECGdeli 169 ± 33 187 ± 27 0.4 [-0.08, 0.73] -18 (-93, 57)

P Amplitude

(µA)

Rest
Neurokit 42 ± 73 38 ± 18 0.14 [-0.27, 0.51] 4 (-138, 145)

ECGdeli 40 ± 83 26 ± 20 0.33 [-0.07, 0.64] 14 (-141, 169)

Recovery
Neurokit 61 ± 89 33 ± 16 0.36 [-0.06, 0.67] 28 (-139, 194)

ECGdeli 50 ± 99 18 ± 23 0.01 [-0.4, 0.42] 33 (-168, 234)

P Duration

(ms)

Rest
Neurokit 93 ± 20 76 ± 14 0.5* [0.13, 0.75] 18 (-17, 52)

ECGdeli 138 ± 14 157 ± 18 0.4* [0.01, 0.69] -20 (-54, 15)

Recovery
Neurokit 92 ± 20 74 ± 13 0.22 [-0.21, 0.58] 19 (-21, 58)

ECGdeli 138 ± 11 157 ± 17 0.27 [-0.16, 0.62] -20 (-52, 12)

QRS Area

(µVs)

Rest
Neurokit 8.19 ± 18.06 5.44 ± 7.34 -0.21 [-0.62, 0.28] 2.75 (-37.35, 42.85)

ECGdeli 3.23 ± 24.76 5.19 ± 7.36 0.0 [-0.47, 0.47] -1.96 (-49.93, 46.01)

Recovery
Neurokit 7.65 ± 18.46 7.18 ± 5.24 -0.2 [-0.62, 0.31] 0.47 (-39.75, 40.69)

ECGdeli 1.09 ± 25.71 3.77 ± 7.8 0.27 [-0.23, 0.65] -2.68 (-50.66, 45.29)

QRS Duration

(ms))

Rest
Neurokit 124 ± 24 139 ± 33 0.44 [-0.04, 0.75] -15 (-79, 48)

ECGdeli 131 ± 16 147 ± 26 0.77*** [0.48, 0.91] -16 (-47, 14)

Recovery
Neurokit 121 ± 17 136 ± 27 0.42 [-0.08, 0.75] -15 (-65, 35)

ECGdeli 131 ± 15 145 ± 21 0.73*** [0.39, 0.89] -14 (-43, 15)

QT Duration

(ms)

Rest
Neurokit 424 ± 47 407 ± 49 0.67** [0.29, 0.87] 17 (-63, 97)

ECGdeli 437 ± 40 430 ± 50 0.68** [0.31, 0.87] 7 (-84, 98)

Recovery
Neurokit 421 ± 44 402 ± 48 0.84*** [0.6, 0.94] 20 (-49, 88)

ECGdeli 431 ± 39 406 ± 44 -0.06 [-0.51, 0.42] 24 (-89, 138)
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Table B.6 Continued

Parameter

(Unit)

Recording

Phase
Algorithm Nexus ECG Withings ECG

Correlation Coefficient

{[95%CI Interval]}
Bias (95% LoA)

QTc Duration

(ms)

Rest
Neurokit 443 ± 44 430 ± 49 0.75*** [0.43, 0.91] 13 (-70, 96)

ECGdeli 458 ± 28 453 ± 49 0.52* [0.07, 0.79] 5 (-84, 95)

Recovery
Neurokit 439 ± 32 428 ± 46 0.53* [0.07, 0.81] 11 (-79, 102)

ECGdeli 453 ± 19 441 ± 38 0.08 [-0.4, 0.53] 12 (-69, 93)

R Amplitude

(µV)

Rest
Neurokit 861 ± 480 313 ± 173 -0.22 [-0.56, 0.2] 548 (-521, 1618)

ECGdeli 686 ± 817 244 ± 258 -0.29 [-0.62, 0.11] 442 (-1260, 2145)

Recovery
Neurokit 845 ± 471 294 ± 174 -0.11 [-0.5, 0.32] 550 (-469, 1569)

ECGdeli 657 ± 847 267 ± 222 -0.04 [-0.44, 0.38] 390 (-1260, 2040)

TWA

(µV)

Rest
Neurokit 83.49 ± 119.67 412.52 ± 745.45 0.29 [-0.13, 0.62] -329.03 (-1786.76, 1128.71)

ECGdeli 86.89 ± 135.7 167.64 ± 240.36 -0.04 [-0.49, 0.44] -80.75 (-641.25, 479.75)

Recovery
Neurokit 82.21 ± 95.81 428.65 ± 548.57 0.02 [-0.4, 0.44] -346.44 (-1383.54, 690.66)

ECGdeli 62.68 ± 29.5 230.66 ± 285.26 0.02 [-0.48, 0.51] -167.98 (-726.89, 390.93)

T Amplitude(µV)

Rest
Neurokit 340 ± 194 119 ± 61 0.54** [0.18, 0.78] 221 (-108, 550)

ECGdeli 338 ± 193 97 ± 67 0.31 [-0.11, 0.63] 241 (-110, 592)

Recovery
Neurokit 315 ± 176 107 ± 50 0.21 [-0.24, 0.58] 208 (-115, 531)

ECGdeli 329 ± 185 77 ± 63 0.43* [0.02, 0.71] 252 (-74, 578)

T Asymmetry

(n.u)

Rest
Neurokit 0.02 ± 0.03 0.1 ± 0.03 -0.16 [-0.53, 0.26] -0.07 (-0.17, 0.02)

ECGdeli 0.0 ± 0.02 0.05 ± 0.06 0.0 [-0.4, 0.4] -0.05 (-0.16, 0.07)

Recovery
Neurokit 0.03 ± 0.03 0.1 ± 0.04 0.2 [-0.24, 0.57] -0.06 (-0.16, 0.03)

ECGdeli 0.0 ± 0.01 0.05 ± 0.05 -0.22 [-0.58, 0.21] -0.05 (-0.16, 0.06)

T Duration

(ms)

Rest
Neurokit 141 ± 22 111 ± 27 0.39 [-0.02, 0.68] 30 (-24, 84)

ECGdeli 216 ± 30 191 ± 16 0.24 [-0.17, 0.58] 25 (-34, 85)

Recovery
Neurokit 138 ± 19 108 ± 24 0.06 [-0.37, 0.47] 30 (-29, 89)

ECGdeli 210 ± 27 182 ± 15 0.16 [-0.27, 0.54] 28 (-29, 85)

T Flatness

(n.u)

Rest
Neurokit -0.8 ± 0.15 -1.23 ± 0.17 0.26 [-0.16, 0.6] 0.43 (0.09, 0.76)

ECGdeli -0.73 ± 0.17 -1.06 ± 0.32 0.54** [0.17, 0.77] 0.33 (-0.29, 0.96)

Recovery
Neurokit -0.79 ± 0.19 -1.11 ± 0.17 0.29 [-0.15, 0.63] 0.32 (-0.11, 0.75)

ECGdeli -0.69 ± 0.12 -0.99 ± 0.34 0.34 [-0.08, 0.66] 0.3 (-0.33, 0.94)
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Additional Figures
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Figure C.1: 6MWT parameters from Apple Watch and Withings Scanwatch recordings when
using Neurokit and ECGdeli segmentation algorithm comparing healthy and heart failure
participants. Dots present the measurements of the individual participants. P-values for
significance of correlation: ns: not significant, *p < 0.05, ***p < 0.01, ***p < 0.001
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Figure C.2: ECG parameters in resting and recovery phase from the Apple Watch recordings
showing statistical significant differences between healthy and heart failure participants when
using the Neurokit segmentation algorithm. Dots present the measurements of the individual
participants. P-values for significance of correlation: *p < 0.05, ***p < 0.01, ***p < 0.001
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Figure C.3: ECG parameters in resting and recovery phase from the Withings Scanwatch
recordings showing statistical significant differences between healthy and heart failure partic-
ipants when using the Neurokit segmentation algorithm. Dots present the measurements of
the individual participants. P-values for significance of correlation: *p < 0.05, ***p < 0.01,
***p < 0.001
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Figure C.4: ECG parameters in resting and recovery phase from the Apple Watch recordings
showing statistical significant differences between healthy and heart failure participants when
using the ECGdeli segmentation algorithm. Dots present the measurements of the individual
participants. P-values for significance of correlation: *p < 0.05, ***p < 0.01, ***p < 0.001
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Figure C.5: ECG parameters in resting and recovery phase from the Withings Scanwatch
recordings showing statistical significant differences between healthy and heart failure partic-
ipants when using the ECGdeli segmentation algorithm. Dots present the measurements of
the individual participants. P-values for significance of correlation: *p < 0.05, ***p < 0.01,
***p < 0.001





Appendix D

Questionnaire

Fragebogen zur Studie „Überwachung der Herzaktivität von
Herzinsuffizienz-Patienten mittels Smart Watches“

Alle Fragen die mit * gekennzeichnet sind, wurden nur von Herzinsuffizienzpatienten beant-
wortet.

Teil 1 - Demographische Daten

Geschlecht: Bitte geben Sie Ihr Geschlecht an.

• männlich
• weiblich
• divers

Alter: Bitte geben Sie Ihr Alter an.

Körpergröße: Bitte geben Ihre Körpergöße an (in cm).

Körpergewicht: Bitte geben Ihr Körpergewicht an (in kg).
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Rauchverhalten: Rauchen Sie - wenn auch nur gelegentlich?

• ja
• nein

Körperliche Leistungsfähigkeit (NYHA)*:Bewerten Sie Ihre aktuelle körperliche Leisungs-
fähigkeit. Die zur Beurteilung der Stadien herangezogenen Symptome beinhalten Atemnot
(Dyspnoe), häufiges nächtliches Wasserlassen (Nykturie), Zyanose (‚Blausucht‘), allgemeine
Schwäche und Müdigkeit, Brustenge (Angina pectoris) oder kalte Extremitäten, Ödeme.

• NYHA I: Keine Einschränkung der Belastbarkeit. Vollständiges Fehlen von Symptomen
oder Beschwerden bei Belastung bei diagnostizierter Herzkrankheit.

• NYHA II: Leichte Einschränkung der Belastbarkeit. Beschwerdefreiheit in Ruhe und
bei leichter Anstrengung, Auftreten von Symptomen bei stärkerer Belastung.

• NYHA III: Starke Einschränkung der Belastbarkeit. Beschwerdefreiheit in Ruhe,
Auftreten von Symptomen bereits bei leichter Belastung.

• NYHA IV: Dauerhafte Symptomatik, auch in Ruhe.

Herzleistung*: Haben Sie eine diagnostizierte reduzierte Herzleistung (Herzinsuffizienz mit
reduzierter linksventrikulärer Ejektionsfraktion, kleiner als 50%)?

• ja
• nein
• keine Angaben/nicht bekannt

Diagnosen*: Bitte geben Sie Ihre Diagnosen an.

• koronare Herzkrankheit
• Vorhofflimmern/-flattern (Herzrhythmusstörungen)
• Bluthochdruck
• Herzklappenfehler
• Periphere arterielle Verschlusskrankheit (pAVK)
• chronisch obstruktive Lungenerkrankung (COPD)
• Asthma
• schlafbezogene Atmungsstörungen (Schlafapnoe)
• Diabetes mellitus
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• Depressionen
• chronische Nierenerkrankung
• weitere Diagnosen:

Akute Herzinsuffizienz*: Litten Sie schon mal an akuter Herzinsuffizienz (starke Ver-
schlechterung des Zustandes, die zu einem Krankenhausaufenthalt führte)?

• ja, falls ja wie oft? und wann zuletzt?
• nein

Weiterführende Fragen

Smartwatch: Besitzen Sie eine Smartwatch oder einen Fitness-Tracker?

• ja, ich besitze Fitness-Tracker/Smartwatch und benutze sie auch regelmäßig
• ja, ich benutze sie aber nicht
• nein, ich besitze keinen Fitness-Tracker/Smartwatch

Funktionen: Falls Sie einen Fitness-Tracker/Smartwatch besitzen, welche Funktionen ver-
wenden Sie oder haben Sie verwendet? (Mehrfachantworten sind möglich)

• Sportaktivitäten
• Schlafüberwachung
• Kalorienverbrauch
• Herzfrequenzmessung
• EKG-Messung
• Sauerstoffsättignungsmessung
• andere:

EKG: Haben Sie schon selbst ein EKG mithilfe einer Smartwatch gemessen (außerhalb dieser
Studie)?

• ja, regelmäßig um meinen Zustand zu überwachen
• ja, aber nur als ich mich unwohl fühlte
• ja, nicht regelmäßig und einfach nur zum Spaß
• nein
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Datenschutz: Haben Sie bedenken bzgl. des Datenschutzes bei der Verwendung von
kommerziellen Smartwatches (z.B. Apple, Samsung oder Withings) für die Gesundheit-
süberwachung?

• ja
• eher ja
• eher nein
• nein

Überwachung mittels Smartwatch: Könnten Sie sich (für Gesunde: im Falle einer Herz-
erkrankung) vorstellen regelmäßig Ihre Herzaktivität mit einer Smartwatch zu messen?

• ja
• mehrmals am Tag
• 1x täglich
• 1-4x in der Woche
• weniger oft
• nein, falls nein: warum nicht?

Telemonitoring*: Benutzen Sie bereits ein System um ihre Symptome/Messwerte zu überwachen?

• ja, falls ja: welches?
• nein

Arztbesuch: Würden Sie einen Arzt aufsuchen, wenn ihr Smartwatch EKG eine abnorme
Messung anzeigt?

• ja, sofort
• ja, aber nur wenn es vermehrte abnorme Messungen gibt
• ja, aber nur wenn ich mich auch schlecht fühle
• nein
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Acronyms

AF atrial fibrillation

AHF acute heart failure

AV atrioventricular

bpm beats per minute

CHF congestive heart failure

CLES common language effect size

ECG electrocardiogram

HF heart failure

HFr high frequncy

HFn high frequncy normalized

HFpEF heart failure with preserved ejection fraction

HFrEF heart failure with reduced ejection fraction

HR heart rate

HRT heart rate turbulence
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HRV heart rate variability

HTI HRV triangular index

LF low frequency

LFn low frequency normlalized

LoA Limits of Agreement

LV left ventricular

LVEF left ventricular ejection fraction‘

SA sinoatrial

MMA modified moving average

NYHA New York Heart Association

pNN50 proportion of RR intervals greater than 50 ms, out of the total number of RR intervals

PPG photoplethysmogram

QTa the interval of the onset of Q wave to the apex of the T wave

QTc corrected QT interval

QTe the interval of the onset of Q wave to the end of the T wave

RMSSD square root of the mean of the squared successive differences between adjacent RR
intervals

SDANN standard deviation of all 5-minute mean RR intervals

SDNN standard deviation of the NN interval

SDSD standard deviation of the successive differences between RR intervals

TWA T wave alternans
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