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Übersicht

Schlaf ist eine lebenswichtige Funktion des Körpers, notwendig für die ordnungsgemäße Funktion
des Gehirns und ein physiologisch und psychologisch wichtiger Faktor für das Wohlbefinden
des Menschen, der sogenannte gute Schlaf. Es hat sich gezeigt, dass Schlafprobleme mit einer
Vielzahl von neurodegenerativen Erkrankungen in Verbindung stehen. Eine davon ist die Parkinson-
Krankheit, die nach Angaben der Weltgesundheitsorganisation in mehr als 8 Millionen Fällen
diagnostiziert wurde, wobei die Zahl der Patienten steigt. Sie kann in motorische und nicht-
motorische Symptome unterteilt werden. Eine Art von Schlafstörung, die so genannte REM-
Schlaf-Verhaltensstörung (rapid-eye-moment), wird als frühes nicht-motorisches Symptom iden-
tifiziert. Eine verlässliche Schlafüberwachung ist daher unerlässlich, um diese Symptome zu
erkennen. Der Goldstandard der Schlafanalyse ist die Polysomographie. Dabei handelt es sich um
ein System von Sensoren zur Messung von Vitaldaten, das gute und leicht interpretierbare Ergeb-
nisse für die Schlafstadienbestimmung liefert. Allerdings ist es zeitaufwändig, es am Patienten
anzubringen und zu analysieren. Vor allem aber behindert es den Schlaf sehr stark und ist für eine
Langzeitüberwachung nicht geeignet. Vielversprechende Alternativen dazu sind tragbare oder
kontaktlose Geräte. Ein gängiges kontaktloses Gerät ist ein Radarsensor. In dieser Arbeit haben
wir ein 61Ghz- continous wave Radarsystem zur Erfassung von Vitaldaten und Deep Learning
(DL) Algorithmen zur Klassifizierung von Schlafstadien verwendet, um eine Lösung für dieses
Problem zu bieten. Die im Zuge dieser Abschlussarbeit durchgeführte Arbeit umfasst die Daten-
erfassung, die Merkmalsextraktion, die Aufbereitung und die Klassifizierung der Schlafstadien
mithilfe von DL-Netzwerken. Bei den untersuchten DL-Algorithmen handelte es sich um ein
convolutional neural network (CNN), ein long-term short-term memory cell (LSTM) und eine
time convolutional network (TCN) Architektur. Während die Herzschlag-Extraktion mit einem
F1-Score von 0, 803 gut abschnitt, erfassten wir 97, 07% der auftretenden Herzschläge. Jedoch
war die folgenden Klassifizierungen der Schlafphasen nicht zufriedenstellend, wobei die besten
Ergebnisse für eine einfache Wake/Sleep-Klassifizierung erzielt wurden. Wir erreichten eine
balanced accuracy von 0, 631 und einen F1-Score von 0, 732 für eine CNN-Architektur. Der
Matthews-Korrelationskoeffizient (MCC) erreicht jedoch nur 0, 203. Diese Ergebnisse zeigen,
dass es möglich ist, die Herzfrequenz für die Schlafanalyse zu verwenden, aber wir benötigen zusät-
zliche Daten, wie z.B. Atemwellen oder Körperbewegungen, um die Vorhersage der Schlafphase
zu verbessern.
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Abstract

Sleep is a vital function of the body, necessary for the proper function of the brain, and a physi-
ological and psychologically important factor for the well-being of humans, the so-called good
night of sleep. It has been shown that sleep issues are related to a wide variety of neurodegen-
erative pathologies. One of these is Parkinson’s Disease which, according to the World Health
Organisation, has been diagnosed in more than 8 million cases, with an increasing number of
patients. It can be divided into motor and non-motor symptoms. A type of sleep disorder, so-called
rapid-eye-moment (REM) sleep behaviour disorder (RBD), is identified as an early occurring
non-motor symptom. Reliable sleep monitoring is, therefore, essential to detect these symptoms.
The gold standard sleep analysis the polysomography. A system of sensors measuring vital signals,
producing good and easily interpretable results for sleep staging. However, it is time-consuming to
mount to the patient and to analyse. Most importantly, it is very obstructive to sleep and not feasible
for longitudinal monitoring. Promising alternatives to this are wearable or contactless devices.
One common contactless device is a radar sensor. In this work, we used a 61Ghz continuous
wave radar system for capturing vital signs and deep learning (DL) algorithms for sleep stage
classification to offer a solution to this problem. The work performed within this thesis contains
data collection, feature extraction, preparation, and sleep stage classification using DL networks.
The inspected DL algorithms were a convolutional neural network (CNN), a long-term short-term
memory cell (LSTM) and a time convolutional network (TCN) architecture. While the heartbeat
extraction performed well with an F1 score of 0.803, we found 97, 07% of the occurring heartbeats.
The following sleep stage classifications were not satisfactory, with the best results for a simple
Wake/sleep classification. We achieved a balanced accuracy of 0.631 and an F1 score of 0.732
for a CNN architecture. However, the Matthews correlational coefficient (MCC) only reaches
0.203. These results demonstrate the possibility of using the heart rate for sleep staging, but we
need additional features, such as respiratory waves or bodymovements, to enhance sleep stage
prediction.
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Chapter 1

Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder. It is the second most common neuro-
logical disorder after Alzheimer’s disease [Tol21; Aya23; Lam22]. Worldwide, the World Health
Organization (WHO) reported more than 8 million cases in 2019 [WHO24a], with men more
likely to develop the disease than women by a ratio of approximately 3:2 [Tol21]. Unfortunately,
the number of cases, as well as disability and death due to PD, is increasing rapidly [WHO24a]. In
1990, there were an estimated 2.5 million cases of PD [Aya23]. As age is considered to be the main
risk factor for PD, the increase in PD cases may be due to an increased life expectancy of more
than 30 years in the recent decades [WHO24b]. Other mentioned factors in the literature include
excessive caffeine intake, smoking and exposure to environmental toxins, as well as depression,
stress, genetics, trauma, head injury and inheritance. Although several modulating effects have
been found, the cause of PD remains unknown, and no cure or prevention has yet been found
[Lam22; Aya23; Tol21]. Early diagnosis is desirable not only to slow the progression of PD but
also to improve the quality of life for patients, as for now only symptoms can be treated.

Still, there is a relatively good understanding of what happens during the progression of
the disease. Physiologically, the dopamine-producing cells in the substantia nigra, a part of the
midbrain, degenerate or die. This leads to dysregulation in the basal ganglia pathway, which is
essential for controlling movement. Dopamine is particularly important in this part of the brain
for smooth and coordinated control of muscle and, therefore, movement [Aya23; Bei14; Bar09;
Spr13].

Symptoms of PD only occur when there is a significant amount of cell damage [Aya23;
Bei14; Sve16]. These symptoms can be divided into motor and non-motor symptoms. The motor
symptoms are the most visible part of the disease. Motor symptoms include tremors, muscle
rigidity and postural problems. The non-motor symptoms are diverse and include various sleep
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disorders, hallucinations, pain, anxiety, depression, different degrees of cognitive impairment and
dementia [Sch17; Tol21; Wei22; Par23; Sve16]. However, both motor and non-motor symptoms
overlap with other neurodegenerative diseases, such as Huntington’s and Alzheimer’s, and increase
in severity over time, making clinical diagnosis complex [Lam22; Wat10]. This results in a
moderately high error rate of about 15 - 24 % [Tol21]. The clinical routine for diagnosis usually
starts with the onset of motor symptoms, however, these symptoms develop relatively late in the
progression of the disease [Wei22; Tol21].

Despite the difficulty of clinical diagnosis, non-motor symptoms are known to occur up to 10
years before the development of motor symptoms and recognition of clinical manifestation. It is
reported that 80% of PD patients have sleep disturbances either caused by non-motor symptoms
or as a result of motor symptoms [Zuz20; Gro20; Sve16]. One such sleep disorder is rapid eye
movement (REM) sleep behaviour disorder (RBD). RBD is a parasomnia in which the normal
paralysis of REM sleep is lost in such a way that patients appear to act out their dreams [Pos19].
In a meta study by Figorill et al., it is stated that 0.5–1% of the general population over the
age of 60 have RBD. Furthermore, isolated RBD (iRBD) is widely recognised as a prodromal
manifestation of alpha synucleinopathies, a type of neurodegenerative diseases including PD and
dementia, present when the neurodegeneration progress has already begun but cardinal symptoms
of the disease have not yet manifested. Approximately 90% of patients with iRBD receive a
clinical diagnosis of an alpha-synucleinopathy disease at 15 years of follow-up, namely Lewy body
dementia (LBD) in about 45%, PD in 45%, and multiple system atrophy (MSA) in 5% [Fig23].

This implies the possibility of using sleep behaviour disorders for early diagnosis. It is
additionally reported that patients with the occurrence of RBD as early non-motor symptoms have
a higher likelihood of developing a mild cognitive impairment. This is a condition which greatly
deteriorates the progression of PD, increasing its morbidity and rapidly impacts the quality of life
[Wat10; Mag21]. Additionally, a higher risk for dysfunctions of the autonomic nervous system, and
an increased risk of cognitive decline were shown. RBD also leads to a more severe development
of motor dysfunctions [Gro20]. REM sleep is important for procedural memory, motor skill
processes and long-term memory as well as emotional memory especially fear conditioning
[Sak23; Erl24; Ler21]. However, contradicting findings have been reported stating that REM sleep
is not particularly important for motor skill and procedural memory consolidation [Sar17; Con23].

The gold standard for sleep analysis is polysomnography (PSG). A set of sensors and electrodes
capture the vital signals of the body and brainwaves during sleep, allowing for accurate detection
of different sleep stages and objective assessment of sleep quality. Sleep is divided into two main
phases: slow wave (SW) sleep and REM sleep [Pat10; Bar21]. However, PSG is very invasive
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and disruptive to sleep. Furthermore, the sensor placement, supervision of the patient during the
night, and manual data analysis require trained personnel and a large time expenditure [Hir16].
Therefore, it is poorly suited for long-term monitoring. A reliable, easy-to-use, and especially
unobtrusive long-term sleep monitoring method could allow early diagnosis of PD and improve
sleep disorders detection. It would also benefit the understanding of sleep and sleep disorders in
general, improving overall sleep quality and, therefore, the quality of life [Bar21].

One established method for sleep monitoring is the use of wearable sensors; Miller et al.
evaluated six commonly used devices (Apple Watch, Garmin, Polar, Oura (Gen.2), WHOOP
(3.0), Somfit). They found an overall high agreement (>90 %) with PSG for sleep-wake and heart
rates classification but lack adequate performance for multi-sleep staging and wake states within
sleep, only reaching a 50 to 65 % agreement with the PSG data. It is further stated that devices
working with heart rate better detect the wake phases within the sleep [Mil22]. Since wearables
still require body contact, they can also be obstructive during sleep. A promising alternative is
sleep staging with radar sensors, a contactless method ensuring unobstructed sleep to observe
normal sleep behaviour and facilitating long-term monitoring [Kag16; Hon18; Pat23]. The radar
sensors measure vital signs contactless and use machine learning algorithms, e.g., neural networks
for data analysis. In recent studies, the accuracy of radar-based phase sleep staging has been
improved from around 57% by Kagawa et al. [Kag16] to 91% by Park et al. [Par24] in two stage
prediction. In recent years for multi-sleep staging, reported accuracies ranged from 76 to 89%
[Lee24] and 76 to 85% [Par24], while back in 2016 accuracies ranged from 34 to 57% [Kag16].
The reason for this performance increase is the advanced processing of vital signs with deep
learning algorithms. Park et al. used a convolutional neural network (CNN) [Par24] and Lee et al.
utilised an attention-based long short-term memory (LSTM) model [Lee24].

In this work, we used a 61GHz continuous wave (CW) radar system to extract vital signs
with focus on the heart rate, additionally extracting body movement or respiratory waves. We
calculated heart rate variability (HRV) features to use for sleep stage classification with a CNN.
The data was recorded during an overnight sleep study at our laboratory using the aforementioned
radar system and PSG as ground truth. Using this dataset, the following research questions were
addressed:

• How accurate is overnight sleep staging using non-invasive vital signs compared to the gold
standard PSG?

• How well do the extracted biosignal features perform with different machine learning
algorithms?
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Here, the CNN is compared against other deep learning (DL) networks namely time convolutional
neural network (TCNN) and LSTM.

This thesis is structured as follows: Chapter 2 covers the medical background of sleep and
basics of PSG as well as the sleep disorders in PD. In Chapter 3 the technical background, the
basics of the employed radar system and DL algorithms, are explained. Chapter 4 describes
the current state of the art in radar sleep analysis. Chapter 5 contains the applied methodology,
including a description of the data acquisition, an explanation of the conducted study, the data
handling and preparation for the CNN and the network architecture itself. Chapter 6 presents the
results of the work and compares them with other machine learning and deep learning networks.
Chapter 7 discusses the results. Finally, Chapter 8 offers a conclusion and outlook to possible use
cases of the proposed algorithm.



Chapter 2

Medical Background

To emphasise on the medical background and motivation behind this work, we will discuss the
different phases of sleep in Section 2.1, highlight the importance of sleep in Section 2.2, talk about
the gold standard PSG for sleep analysis in Section 2.3. Besides, we will take a short look at the
sleep disorders during Parkinson’s disease in Section 2.4.

2.1 Human sleep behaviour

Humans experience different sleep stages or sleep phases during the night. Typically, human sleep
consists of one to eight cycles per night [Le 20]. Between these cycles, there commonly are short
periods of wakefulness. A typical cycle consists of four to five stages, depending on whether the
wake state during the night is regarded as a sleep stage, although wakefulness between a cycle
does not always occur. These sleep stages are namely N1 (from wakefulness to sleep), N2 (light
sleep) and N3 (deep sleep, slow wave (SW) sleep or delta sleep) and REM sleep (preparation
for the return of consciousness) and are associated with specific brain waves. Sleep spindles, a
type of fast oscillation in the range of 11 to 16 Hz, occur mainly during N2 and N3. While REM
sleep is apart from the eye movements, also associated with the suppression of muscle tonus.
Other sleep classification approaches distinguish between three stages (wakefulness, non rapid
eye movement (NREM) and REM sleep) or simply two stages (wakefulness and sleep) [Boo17;
Bar21; Lew21; Le 20].

During sleep, the heart rate is generally lower than during daytime activity, and the heart rate
variability is also more stable. The heart rate reaches its lowest point during SW sleep; as the
NREM sleep is associated with the parasympathetic nervous system, the body temperature and
blood pressure also decrease. While the REM sleep is associated with the sympathetic nervous
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system, the heart rate is rising as well as the body temperature and blood pressure [Bro12; Sej22;
Mal18].

2.2 Importance of sleep for psychological and physical health

Recent studies found that in healthy human, all sleep phases and their interactions contribute
to normal cognitive functions such as memory consolidation and skill learning [Sak23; Sar17;
Bar21].

Sleep is essential for maintaining cognition and healthy brain functions, and NREM and REM
sleep has restorative functions, such as removal of metabolic waste products. Disruption of sleep
interferes with normal restorative functions, causing a widespread range of psychological and
physical malfunctions. These include respiratory and cardiovascular problems, but also changes
in emotional reactivity and reduced cognitive performance leading to impairments in attention,
memory, and decision making [Lew21; Bro12]. It is to state that the quality of sleep has a high
impact on the well-being of humans [Sco21; Fab21; Lew21; Le 20]. Prolonged bad sleep quality
can lead to the development and worsening of neurodegenerative diseases [Fig23; Ben19]. Further,
diet choices and physical activity impact sleep quality; a bad diet negatively affects sleep quality,
while healthy food and physical activity, in general, are positive for sleep quality [Sej22]. Martin
et al. reported that during REM sleep dream reports are on average, longer, more vivid, bizarre,
emotional and story-like compared to those collected after NREM [Mar20]. However, the exact
relationship between sleep phases and their significance for sleep has yet to be fully understood.
Nevertheless, during a regular night in healthy humans, there is more NREM sleep at the beginning
of the night and more REM sleep at the end of the night [Bar21]. In humans, the stages of sleep
are, to some extent, intertwined as the duration of the different stages over a cycle and the night
varies depending on the total duration and length of previous sleep stages. The occurrence of the
specific sleep stages, how long and often they appear, seems to have a strong influence on the
quality and overall duration of sleep, as well as on its effectiveness, i.e. how well rested one feels
[Le 20; Lew21; Bar21; Bar23], but also their effect on the cognitive abilities of humans [Scu15].

Barbato states that short sleep durations have a higher percentage of SW sleep, and with an
increase in total sleep time, the percentage and duration of REM sleep increased; long sleep
periods were perceived of better quality [Bar21]. In particular, this indicates that REM sleep is an
important measure of sleep quality, the so-called good night of sleep [Bar21].

Baena et al. found that with age, there is a decrease of sleep spindle slow wave coupling
during NREM sleep, which negatively affects the problem-solving skill of humans [Bae24]. Their
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findings support that the quantity and quality of sleep are significantly reduced with age and
that age-related changes in spindles and slow waves during NREM sleep are associated with a
reduced benefit of sleep on sleep-dependent memory processes and consolidation. However, the
degree of the preservation of coupling with age correlates with the extent of problem-solving skill
consolidation during sleep [Bae24].

It has been shown that sleep is essential for memory and motor skill consolidation [Sti05];
however, which sleep stage is mainly responsible for this phenomenon remains unclear. On the
one hand, Sara states that the REM sleep is not particularly important for procedural memory
and motor skill consolidation and the processes happening to equal parts in the SW sleep and
REM sleep. Instead, the REM sleep is important for the emotional memory and here, especially
the fear conditioning [Sar17]. Lerner et al. found that REM sleep impaired recall of the original
fear-related memories, but it improved the ability to generalise these memories to novel situations
that emphasised the discrimination between threat and safety signals, increasing the sensitivity to
the most relevant stimuli previously associated with fear [Ler21]. On the other hand, Sakai reported
in a more recent paper that the REM sleep is the most important sleep stage for consolidating
new memory in the long term memory as well as the learning of new skills as the long-term
synaptic changes happen during REM sleep, and that SW sleep and sleep spindles are responsible
for declarative learning as it does not require large amount of synaptic changes [Sak23].

Erlacher et al. also show that after complex motor skill training, the REM sleep density
is increased [Erl24]. And Almeida-Filho et al. showed in a rat study that phasic REM sleep
supports spatial learning [Alm21], Conessa et al. found that a daytime nap after physical practice,
motor imagery, or action observation supports the skill consolidation, and its generalizability
toward the inter-manual transfer of skill after action observation. They found that a temporal
cluster organisation of sleep spindles underlies motor memory consolidation. Moreover, they state
that their findings may have practical impacts on the development of non-physical rehabilitation
interventions for patients having to remaster skills following peripherical or brain injury [Con23].

In conclusion it can be said that, the sleep dynamic is complex and needs further research.
Depending on age, whether sleeping in the day or nighttime, sleep duration, and what actions and
food are taken before sleep affect the sleep structure, restorative effects, and quality of sleep.

2.3 Gold standard of sleep analysis - PSG

The gold standard for sleep analysis is polysomnography (PSG), which has several benefits but
also considerable drawbacks. It is used to objectively evaluate sleep, document and investigate
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vital functions during sleep by simultaneously and continuously recording neurophysiological
signals and vital signs of the human body, such as the brain waves, the heart rate or respiratory
waves [Blo97; Jaf10; Bou19]. It enables the study of human sleep behaviour and sleep structure up
to a neuronal level by incorporating the assessment of brain waves via the electroencephalography
(EEG). Additional sleep-quantifying questionnaires contribute to a more objective sleep research.
An PSG is usually performed in a sleep lab with constant monitoring of sleep. Mounting the
sensor usually requires between 30 to 60 minutes [Blo97].

Figure 2.1 shows a participant mounted to PSG and depicts the multiple sensors that are placed
on the participant. It highlights a major drawback of PSG, which is its obtrusive character that
can have a disturbing effect on an individual’s sleep. Additionally, a sleep lab poses an unfamiliar
environment, which further reduces sleep quality.

Figure 2.1: Example of PSG sensors and placement, the circles indicate electrodes at the shin. The
placed sensors are pairs of electromyography (EMG) electrodes on each forearm and shin (the blue
circles) as well as on the chin to record jaw movements, electrocardiography (ECG) electrodes for
the heartbeat, electrooculography (EOG) electrodes diagonally on the side of the eyes to pick up
the eye movements, an EEG cap to measure the brain waves, two straps one for the abdomen and
one for the thorax respiration, a nasal tube to measure respiratory pressure and a finger pin for the
oxygen level and heartbeat. Finally, there is a microphone at the chin to measure noises such as
apnoea during the night and video recording to allow monitoring of the participants from afar.
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2.4 Sleep disorders in Parkinson’s disease

Sleep disturbances affect around 80 % of all PD patients and are therefore a common non motor
symptom. The percentage is increasing with the progression of the disease. The symptoms range
from excessive daytime sleepiness, the difficulty to remain alert and wake during the day leading
to “sleep attacks”, to nocturnal sleep disorders. These nighttime sleep disorders include:

• Insomnia, which is the difficulty initiating, maintaining, consolidating sleep or generating an
overall good sleep quality, despite satisfying opportunities for sleep and resulting in daytime
impairment.

• RBD a loss of muscle tonus suppression during REM sleep.

• Restless leg syndrome, which is the urge to move the legs usually associated with leg
discomfort with a worsening condition during nighttime.

• Obstructive sleep apnoea is the repeated reduction of the airflow during the night due to
anatomical obstruction of the airway. The sleep apnoea can be caused by PD itself or the
medication.

• General circadian rhythm disorders, which are chronic or recurrent sleep disturbances due
to alteration of the circadian system or a misalignment between the endogenous circadian
rhythm and socially determined sleep-wake schedules.

These symptoms can occur on their own but also follow after the motor symptoms or medication
[Sch17; Zuz20; Mag21; Gro20].

As mentioned in Chapter 1 RBD is especially useful for early diagnosis of PD as it occurs
up to 15 years before the development of the disease. Recently, Lahlou found that a lower sleep
spindle density during the N3 sleep stage was associated with a worsening of declarative memory
consolidation as well a reduced temporal clustering of the spindles for PD patients, hinting to be
one reason for worsening cognitive function in the progress of the disease [Lah24].





Chapter 3

Technical Background

In this chapter, the fundamental principles of continuous wave radar will be highlighted in Section
3.1. Further examples for a 61GHz system will be given that emphasises its suitability for vital
sign measurement. Further, the basics of the employed deep learning algorithm for the sleep
analysis will be explained with a focus on the CNN in Section 3.2 and Section 3.3.

3.1 Fundamentals of continuous wave radar

Radar sensors are of interest to healthcare professionals as they pose a promising non-invasive
method for measuring vital signs [Pat23; Wan14; Yav16; Muñ17].

The wide range of possible applications demonstrates the diagnostic power of contactless
measured vital signs. It can be used in nearly all medical fields of healthcare, ranging from elderly
care (e.g., fall detection) [Han21] to telemedicine and telemonitoring technique with its ability to
monitor general physiological signals, such as respiration, pulse wave propagation, heart sounds,
heartbeats or body movements [Ang20; Yav16]. More specific proposed applications are in sleep
analysis [Kag16; Hon18], disaster medicine (life detection) [Che00], or cancer therapy [Gu12] but
also uses in dermatology are possible, e.g., for patients with compromised skin [Bor16]. Further,
radar can be used as a communication method to transmit data from on or in-body sensors to
medical personnel for monitoring or diagnostic purposes, one example being the endoscopic
capsules [Wan12].

Radar is a sensor technique, more precisely, a localisation technique using electromagnetic
waves to determine the angle, velocity and distance of objects relative to the origin of the wave,
the antenna [Rah19]. To measure the distance of a target, the time of flight method or round trip
time of flight method, as the start and end point are the same, is commonly used for sensor systems
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utilising wave propagation.

In radar systems, the electromagnetic wave is sent with an antenna in the direction of the target,
which scatters and reflects the wave. Some of the scattered waves are received back by the antenna.
Equation 3.1 shows the distance calculation omitted in this way, where c is the wave propagation
speed in the medium, and τ is the round trip time of flight [Kra24; Rah19].

d =
1

2
cτ (3.1)

In air, c is the speed of light, c ≈ 3 ∗ 108ms−1, when we assume a 20 cm distance to the target,
the round trip travel time calculates with τ = 2d/c to 1, 33ns. Further, as equation 3.2 shows,
the propagation speed c is embedded in the carrier frequency fc of the electromagnetic wave that
defines the frequency band of the radar and its wavelength.

fc =
c

λ
, λ =

c

fc
(3.2)

The wavelength is important as it determines the radar system’s accuracy, resolution, and ap-
plicability. Note that c is determined by the medium and not always constant. The maximum
unambiguous range of a radar system is defined as

dmax =
c

2fc
=

λ

2
(3.3)

For example, a carrier frequency of 61GHz with a wavelength of 4, 918mm would lead to
2.459mm as the maximum unambiguous range. This requires a high sample frequency of the
radar to capture movements bigger than 2.459mm, e.g., chest or limb movements [Kra24].

The radar regulation of the International Telecommunication Union (ITU) states approved
carrier frequencies for industrial, scientific and medical (ISM) applications. They are in frequency
bands from 6.765MHz − 246GHz and shown in Tab. 3.1.

Table 3.1: ITU radio regulation approved frequency bands for ISM applications and centre fre-
quencies [ITU20]

Frequency band centre frequency
6765 - 6795 kHz 6780 kHz
433.05 - 434.79 MHz 433.92 MHz
61 - 61.5 GHz 61.25 GHz
122 - 123 GHz 122.5 GHz
244 - 246 GHz 245 GHz
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In medical application common frequencies are 5.8GHz [Li18], 24GHz [Kag16; Han21] and
61GHz [Wen23]. One, in literature, frequently used radar mode is the CW radar [Wan14; Kag16;
Han21; Pat23; Kra24; Yav16; Lee24; Li18], but frequency modulated continuous wave radar
[Wan14] or ultra wideband radar [Par24; Yan18] were also utilised in the scope of biomedical
research.

Continuous wave (CW) radar or Doppler radar works based on the Doppler principle. Next
to pulse-based radar, it is one of the two general methods to employ radar sensors. It has the
advantage that it is usually smaller and simpler in design, as well as lighter than pulse-based radar.
Further, it transmits lower power and detects at a shorter range than pulse radar [Rah19]. However,
noise leaking from transmitter to receiver and its low unambiguous target detection range are its
most prominent limitations [Rah19; Kra24].

The Doppler frequency fd of the continuous wave radar is defined as the difference between
the transmitted signal stx and the receiving signal srx. The frequency fd can be expressed as

fd = frx − ftx, with ftx = fc or fd = 2
vr
λ

= 2
vrfc
c

(3.4)

where vr is the radial velocity of the target moving from the antenna, and fc is the transmitted
frequency or carrier frequency. The general Doppler frequency can then be denoted as

fd = ±2πfc
2ḋ

c
(3.5)

with the plus sign for approaching and the minus sign for receding targets, ḋ is the travel distance
of the target [Rah19].

An CW radar system can be realised with a homodyne receiver, which is depicted in Fig. 3.1.
Considering a voltage-controlled oscillator in the homodyne receiver the transmitting signal stx
can be written as

stx(t) = Atx cos(ωc + ϕ0) (3.6)

with the amplitude Atx and the angular frequency ωc = 2πfc. While the receiving signal is

srx(t) = Arx cos(ωc(t− τ) + ϕ0 + ϕd) (3.7)

which is generally the same as the transmitted signal but with a time delay of τ , an amplitude of
Arx = AtxC, with C being the scattering property of the material lowers Arx. Further srx has a
phase shift of ϕd influenced by the offset of the radar hardware and the phase shift properties of
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Oscillator Antenna Tx

Antenna RX

90◦

fc

fc +fd

Re{sb}

Im{sb}

Transmitted Signal stx

Received Signal srx

Mixer Lowpass filter

d = 1
2
cτ

Figure 3.1: Bock diagram of a CW radar system with homodyne receiver, and an oscillator,
quadrature mixer and low pass filter.

the target material [Alb24; Kra24; Rah19].

After utilising a quadrature mixer to mix the receiving signal and the transmitted signals
together, obtaining in-phase and quadrature (I/Q) components, the retrieved signal is the baseband
sb(t). After applying a low pass filter to remove unwanted signal components at twice the carrier
frequency, it can be used to calculate the radial velocity of the target [Alb24; Kra24; Rah19;
Muñ17].
The baseband signal sb can be denoted as

sb(t) = Re{sb(t)}+ jIm{sb(t)}

=
1

2
AtxArx·exp(j(ωcτ−ϕ0))

= Ab·exp(j(ϕb))

(3.8)

Where the phase ϕb = ωcτ−ϕ0 of the sb is proportional to the delay time τ which is the round trip
time of equation 3.1 and Ab is proportional to the power of the signal [Alb24]. This shows that the
distance d can be derived from the baseband signal. However, the ambiguity of the phase by 2π

and ϕ0 has to be considered. It shows that a distance change of half a wavelength rotates the phase
by 2π, which also corresponds with equation 3.3. Further, it can be derived that for a frequency
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of 60GHz and, therefore, a wavelength of 5mm, a phase change of 1° corresponds with a 7µm

distance change. This enables the detection of micro-movements from the skin, e.g., the pulse
wave or heartbeat [Kra24]. Therefore, a CW radar system with 60GHz and 61GHz as well is
suitable to detect vital signs.

3.2 Fundamentals of convolutional neural networks (CNN)

A CNN is a classical DL algorithm originally developed to analyse local features in images but
can also be used on time series; in this case, it is also called 1D convolutional neural networks
(1D-CNN) [Zha17; Liu19].

The idea behind CNNs is to recognise patterns in the input data by processing several neigh-
bouring data points at a time. This is implemented by convolving several kernels with trainable
weights with the input in each layer and, therefore, enhancing distinct features of the original
input. To reduce dimensionality, the convolution layer results are passed through pooling layers in
between. Finally, a fully connected layer classifies the convolution layer output [Zha17]. In Fig.
3.2, a basic structure of a CNN is depicted.

Input Conv1

ReLU

BN1

Average Pool

Conv2

ReLU

BN2

Maximum Pool

FC1

FC2

Softmax Output

block one block two

Figure 3.2: Example of a two Bock CNN with two convolutional layers (conv1, conv2), each
followed by a rectified linear unit function (ReLU) activation function, an batch norm (BN) layer
(BN1, BN2) and a pooling layer. Lastly, there are two fully connected (FC) layers and a softmax
function for classification.

A 1D convolution can be written as shown in equation 3.9, where k is the kernel size utilised for
the convolution and ⋆ is the valid cross-correlation operator behaving similar to the convolution
operator ∗, N is the batch size, C denotes the number of channels, L is the length of the signal
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sequence for i, j ∈ L. In the simplest case, the output value of the layer with input size (N,Cin, L)

has a size of (N,Cout, Lout) and is

out(Ni, Coutj) = bias(Coutj) +

Cin−1∑
k=0

 weight(Coutj , k)⋆input(Ni, k) (3.9)

Lout is calculated with

Lout = bLin + 2× padding − dilation × (k − 1)− 1

stride
+ 1c (3.10)

Here, stride, padding and dilation are hyperparameters characterising the discrete convolution.

• Stride controls the step size by which the kernel should be shifted.

• Padding controls the amount of overlap the convolving kernel over the border of the input
data.

• Dilation controls the spacing between the kernel points.

The inclusion of a batch normalisation layer is not always needed. However, it helps to
reduce internal covariate shift. In doing so it, accelerates the training of deep neural networks by
normalising the mean and variance of the layer input [Ser15]. It further helps the gradient flow
through the network by reducing dependency on the initial values or scale of the parameters and
can be stated as

y =
x− E[x]

2
√

V ar[V ar[x] + ε
∗ γ + β (3.11)

The mean and standard deviation are calculated per dimension over the mini-batches, and γ and β

are learnable parameter vectors of size C (where C is the number of features or channels of the
input). By default, the elements of γ are set to 1, and the elements of β are set to 0.

The pooling layer is a reduction of input features. The example shown in Fig. 3.2 uses average
pooling in the first convolution block and max pooling in the second block. Figure 3.3 shows the
working principle of a pooling layer where, in the case of average pooling, the average is used for
the next layer, and in the case of max pooling, the maximum value is used.

The fully connected layers are a linear transformation that is applied after a flattening of the
last convolutional block, they classify the features globally, and the last FC layer has to be the size
of the class numbers that are to predict. The final prediction probability of the classes is usually
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Input
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1 3 2 1

4 5 6 4
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Figure 3.3: Pooling layer example for average and max pooling, with a 2x2 kernel

calculated with a softmax function. The softmax function denotes as

Softmax(xi) =
exp(xi)∑
j exp(xj)

(3.12)

The equations 3.9, 3.10, 3.11 and 3.12 can be found in the Pytorch documentation [Pyt24].

3.3 Other machine learning algorithms

The Section will give an overview of the DL , which are used to compare the results of the CNN
with. Generally machine learning (ML) is allowing the development of algorithms that enable
machines to make predictions or identify patterns based on data. It is usually differed between
classic ML and DL algorithms. ML algorithms are often simpler in structure than DL approaches,
which are commonly called neural networks as they are inspired by the neuron structure in the
human brain. DL networks are more general and inherently able to learn features on their own
but thus also less understandable, as it can be hard to trace how exactly the results are produced.
They are, therefore, often referred to as black box models, which can be challenging in medical
applications, where transparency on the decision-making is very important. While classical ML
approaches commonly require explicit pre-processing and expert feature engineering, the decision
process is more interpretable [Kra24].
Deep learning algorithms used:

• LSTM (long short-term memory): A type of recurrent neural network especially designed
to overcome the exploding/vanishing gradient problems that typically arise when learning
long-term dependencies. It usually consists of 3 gates: a forget gate, which states how much
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information from the previous step is forgotten; an input gate, which imports the information
of the current step; and an output gate, which updates information passed to the next step.
[Hoc97].

• TCNN/TCN (time convolutional neural network/ time convolutional network): A type of
convolutional network that usually has no leaking from future to past, casual convolution,
and maps the input to an output of the same length [Bai18]. It is suitable for long sequential
data, e.g., language, music or traffic [Lin21] and sensor data from wearables [Ing21]. It
uses casual convolutions, dilated convolutions and residual connections to enable a larger
receptive field [Lin21].



Chapter 4

Related Work

This Chapter will focus on related research involving radar systems for sleep staging. There
are various ways to utilise the gathered radar signals, either by directly feeding them into the
classification algorithm [Lee24] or by extracting the vital signs from the radar signal and feeding
these into the classification. There is often used a different variety of combinations for vital
signs ranging from all possible signals to only one selected few, e.g., heartbeats, respiration and
body movements [Kag16; Hon18] to only respiration [Par24] or respiration and body movements
[Lau20; Tof20].

Lee et al. feed the raw radar data into the sleep prediction algorithm without previous feature
extraction. They used two 60 GHz frequency modulated continuous wave radar sensors, one
above and one below the bed, to predict obstructive sleep apnea. They utilising an attention-based
bidirectional LSTM consisting of four LSTM and attention layers. Their best results were achieved
using both radar sensors and classifying three sleep stages (Wake, NREM and REM) with an
overall accuracy of 85.2 % and a four-stage classification (Wake, light, deep and REM sleep) with
an overall accuracy of 80.3 % [Lee24].

Kagawa et al. used two 24GHz microwave radar sensors placed under the mattress to extract
the heart rate (HR), heart rate variability (HRV), body movements, and respiratory signals during
sleep. They fed these features in a canonical discriminant analysis for the sleep staging resulting
in the following accuracies: 66.4 % for identifying Wake and sleep, 57.1 % for three stages (Wake,
REM, and NREM) and 34 % for four stages (Wake, light, deep and REM sleep) [Kag16].

Hong et al. as well used heart rate, respiration and body movements extracted by a low-power
CW Doppler radar with a frequency of 2.4 GHz, with the radar positioned above the bed. They
were comparing boost tree and bagged decision tree with a subspace K-nearest neighbour algorithm;
the last one outperforms the other classifiers with a highest accuracy of up to 86.6 % for four
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sleep stage classification (Wake, light, deep and REM sleep) with class accuracies of 75.8 %
(light), 89.1 % (deep), 87.0 % (REM) and 82.0 % (Wake), boosted trees achieving 86.4 % highest
accuracy and bagged trees had a highest accuracy of 85.7 % [Hon18].

Park et al. utilised ultra wideband radar connected to a smartphone. They applied a 1D-CNN
to extract the respiratory features from the resulting Doppler map. Finally, a four-layer multi-
head attention transformer block was used to classify the features, finding that epoch-by-epoch
comparison between the predicted and expert annotated four sleep stages (Wake, light, deep and
REM sleep) resulted in 76 % accuracy and Cohen’s kappa of 0.64, with class-wise sensitivities of
50.3 % (deep), 76.4 % (light), 88.2 % (REM), and 80.7 % (Wake). For three classes, they achieved
an accuracy of 85.8 % and Cohen’s kappa of 0.735 with a sensitivity of 86.3 % (NREM), 85.4 %
(REM), and 83.1 % (Wake) [Par24].

Lauteslager et al. used a Circadia (Circadia Technologies Ltd., London, United Kingdom)
Contactless Breathing Monitor C100 that utilises pulsed ultra wideband radar to monitor the
respiration and body movement of patients during the night as a possible home monitoring device.
In their study, the C100 outperforms the medical grade wrist-worn inertia measurement unit (IMU)
based monitoring devices by Philips (Philips, Amsterdam, Netherlands) or Fitbit (Google Fitbit,
Mountain View, USA), having a true positive rate of 75 %, 59.9 %, 74,8 % and 57,1 % for deep,
light, REM and Wake classification [Lau20].

Toften et al. performing a clinical sleep study using Somnofy (Vitalthings AS, Trondheim,
Norway) an impulse radio ultra-wideband radar sensor with a center frequency of 7.3GHz, a
bandwith of 1.4GHz and sampling rate of 23.3GHz, and the Somnofy sleep staging algorithm
version 1.0, which uses non-causal temporal neural networks like a TCNN and LSTM recurrent
neural networks (RNN) that are fed with respiration and movement data from the radar [Tof20].
Toften et al. achieved high Epoch-by-epoch accuracy in a clinical validation study for young adults.
With 76 % accuracy and a Cohen’s kappa of 0.63 against a PSG accuracy of 88 % and Cohen’s
kappa of 0.82. The sleep stage differentiation for Somnofy was 0.75 for N1/N2, 0.74 for N3 and
0.78 for REM, and PSG scorers had an agreement of 0.83 for N1/N2, 0.92 for N3, 0.96 for REM
and 0.91 for Wake [Tof20].

However, besides these, there are multiple approaches for ML-based sleep staging that utilise
a broad range of input signals and features. For instance, non contactless measured raw EEG data
geather with during PSG recording was used for CNN-based sleep staging [Zhu20; Mas24; Par23]
or random forest (RF)-based sleep classification [Coo19]. In the scope of PD, Parajuli et al. used
a CNN to detect mild cognitive impairment from PD patients with EEG signals, achieving high
differential accuracy between normal and impaired cognition [Par23]. There is also literature
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using wearable systems to detect vital signs for the sleep stages classification mainly by employing
HRV through the sleep phases with CNN classification [Hab23; Wan22; Mal18].





Chapter 5

Methods

The chapter describes the performed sleep study in Section 5.1 and further contains a description
of the dataset used in this work. In Section 5.2, the feature extraction from the collected data
will be covered, while Section 5.3 highlights the feature preprocessing for the CNN. Section
5.4 states the training pipeline and Section 5.5 describes the models (CNN, LSTM,TCNN). The
hyperparameter search values are shown in Section 5.6.

The implementation of this work was done in Python using the Scikit-learn and NeuroKit
packages [Ped11; Mak21] for feature extraction, the PyTorch package [Pyt24] for model imple-
mentation.

5.1 Data acquisition

To acquire sleep data, a study was conducted in cooperation with the Department of Neurology of
the University Hospital Erlangen (Medicine 1). The control group was recorded in the Machine
Learning and Data Analytics Lab (MaD Lab).

The overnight recording included a PSG as ground truth, performed with a Somno medic
(SOMNOmedics AG, Randersackerl, Germany) SOMNO HD eco system whose components are
illustrated in Fig. 5.1. Further, the experimental setup included four radar sensors to measure the
vital signals, arranged as shown in Fig. 5.2. The sensors are placed in an array over the width of the
mattress under the bed in the chest area. The study used CW radar sensors developed within the
”Empatho-Kinaesthetic Sensory Systems” (Empkins) collaborative research center at the Technical
University Hamburg (TUH) in the chair of Prof. Dr. Kölpin, the institute of High-Frequency
Technology. They are utilising a carrier frequency of 61GHz and sampling rate of 1953.125Hz.
Their structure and working principle are described in detail in [Alb24].
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Figure 5.1: An overview of the different components of the utilised SOMNO HD eco PSG system:
[1] somno hub, [2] leg EMG electrodes, [3] arm and chin EMG electrodes, [4] ECG electrodes,
[5] EOG electrodes, [6] Hub for EEG and EOG, [7] EEG electrode cap, [8] night camera, [9] nose
tubes, [10] abdomen and torso straps, [11] finger pin, [12] microphone

Figure 5.2: Radar sensor placement under the bed, from left to right sensor 1,2,3 and 4

As ground truth labels, we used Wake, N1, N2, N3, and REM, acquired from the automatic
Somno eco labelling algorithm. For every 30s epoch, one label is assigned by the Somnos algorithm,
following the guidelines of the American Academy of Sleep Medicine (AASM) for sleep stage
classification.

Prior to the data recording, the participants were asked to fill out four self-assessment ques-
tionnaires regarding sleep quality:

1. The Pittsburgh sleep quality index (PSQI), 26 items

2. Stop-Bang to asses for obstructive sleep apnoea, seven items

3. RBD Screening questionnaire, 13 items
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4. SF-12 Health Survey to overall evaluate the physic and psychic state of the participants, 12
items

Resulting in a total of 58 questions, example prints of the used questionnaires are included in
Appendix A.

5.1.1 Dataset description

In the control group, data from 44 participants was collected, with 16 male and 28 female partici-
pants. Of the total 44 participants, three did not give permission to use their demographic data.
Further, 15 participants were excluded from the study data due to technical issues related to the
recording of the ground truth or related to the radar sensors.
Of those, in seven cases there were the following issues during the recording of ground truth data
during the night:

• In three instances EEG signals were incomplete due to the disconnection of cables.

• For two instances poor EEG electrode connection occurred.

• In one instance the EOG electrode detached.

• For one instance the video signal was lost, preventing the determination of sleep termination.

• For one instance the automatic ground truth labelling was absent.

The recorded radar data was insufficient a total of six times:

• In two instances due to unexpected technical issues of the recording laptop.

• For four instances due to missing synchronization signals.

Lastly, one participant withdrew from the study during the night.
After excluding the erroneous recordings from the dataset, 29 participants remained. The

statistical characteristics of the remaining cohort are listed in table 5.1, while table 5.2 shows the
statistical description of the sleep durations.
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Table 5.1: Statistical description of the control group demographics after excluding bad data

Age [years] Weight [kg] Height [cm] Gender
Mean 38,51 70,46 172,18 Female 17

Std 16,16 12,06 10,40 Male 12
Min 18 49 152
Max 77 105 197

Table 5.2: Statistical description of the recorded sleep durations

Time [hh:mm:ss]
Total Time 223:42:54

Mean 07:42:54
Std 00:55:41

Min 05:50:30
Max 09:15:30

5.2 Feature extraction

In the initial step, the heartbeats were extracted from the recorded radar data using the I and Q
channels. The radar data was synchronized with the ECG data from the PSG to ensure the time
ranges matched. The ECG signal was resampled to the radar sample rate of 1953.125Hz. For
synchronization the four radars nodes with each other the emrad-io1 package was utilised. A
previously developed and validated LSTM-based model, deployed in the empkins-micro package2

was applied after the synchronisation to predict the heartbeats. This model provides a probability
function indcation the likelihood of the heartbeats occurring in the radar signals. The bi-directional
LSTM is applied individually to the recorded streams of each radar, after which they are summarised
to dampen noise in the LSTM output and for a more stable beat prediction. An example of the
individual LSTM probability for each radar is shown in Fig. 5.3, illustrating not every radar node
captures each heartbeat consistently.

The radar data was fed into the LSTM in 30s batches. The final heartbeats were extracted
using peak detection, employing the find_peaks method from the Python package SciPy [Vir20].
As hyperparameters for this peak detection function, the height parameter was set to 0.24, and
the distance to 0.3 ∗ radar sample frequency respectively. These values were chosen after a grid
search containing different parameters, shown in Section 6.1.

Fig. 5.4 shows an example of the summarized LSTM probability outputs and ground truth.
For comparison two height thresholds (0.32 and 0.0.26) and the respectively found heartbeats

1https://github.com/empkins/empkins-io/tree/main/empkins_io/sync
2https://github.com/empkins/empkins-micro/tree/main/empkins_micro/emrad

https://github.com/empkins/empkins-io/tree/main/empkins_io/sync
https://github.com/empkins/empkins-micro/tree/main/empkins_micro/emrad
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Figure 5.3: Example of the LSTM probability output for each radar sensor 1 (blue), 2 (light blue),
3 (yellow), and 4 (turquoise) and the reference ECG signal (green); e.g., radar 3 captures almost
every heartbeat expect one shortly after four o clock (red rectangle), but radar 1 captures the
heartbeat at this position.

in the LSTM probability are depicted. It shows a lower threshold will lead to more correctly
detected heartbeats, but also results in more false positives. The performed grid search contained
the following pipeline: The true heartbeats were extracted using the BioPsyKit package [Ric21].
Using the corresponding time stamps of the raw ECG and beats position to compare them with the
beat positions calculated with the find_beats method from LSTM heartbeat prediction. Tested
were the values 0.24, 0.26, 0.28, 0.30, 0.32 for a selection of 5 participants (VP: 2,6,10,28, and
42), from the beginning, middle and end of the control group recordings.

The obtained heartbeats are used to calculate the HRV features to predict the sleep stages. The
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Figure 5.4: 20s example of the LSTM output in (light blue) with the found heartbeats in (purple,
orange circle) for the heights 0.32 and 0.26 from the find_peaks against the ground truth ECG in
(dark blue), the true beats are marked with green diamonds. The predicted heartbeats are shown in
both the LSTM output and ECG for easier comparison. Lastly, the blue and orange lines represent
the height value for included beats.

HRV features were calculated using the hrv method from the Python package NeuroKit2 [Mak21;
Pha21] a biosignal processing package, calculating a range of time-domain, frequency-domain,
and non-linear HRV features. The hrv method uses the heartbeat position in the time frame
and their sampling rate to calculate the HRV indices by utilising the beat-to-beat (RR) intervals.
The extracted heartbeats are windowed with a sliding window of different sizes with a 30s step
to match the labelling interval of the ground truth labels of the sleep stages. For each window,
the HRV features were calculated with the hrv method, which produces all available features in
NeuroKit. Depending on the length of the input window, some features are more reliable than
others. However, in the NeuroKit documentation paper, Pham et al. recommend the use of time
and frequency domain features for shorter window sizes as they produce more reliable HRV
indices compared to the non-linear features, which usually require longer window sizes (up to 24
h) [Pha21]. Possible features from the time-domain, frequency-domain, and non-linear indices are
detailed in the package documentation [Mak21].

The window sizes of 60s, 180s and 360s were tested, resulting in three different numbers of
feature channels from all 94 features that can be calculated by the hrv method, as the windows are
too short for some of the time- and frequency-domain HRV features as well as non-linear indices
provided by the hrv method. The window size of 60s resulted in 74 usable features, the 180s

window resulted in 84 features and the 360s window resulted in 88 total features.
Listed in the table 5.3 are the possible time- and frequency-domain indices.
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Table 5.3: Feature table with all possible HRV features in the time- and frequency-domain. The
marked features are used for training the DL networks. The features marked with an x occur in all
three window sizes, those marked with y only in the window sizes 180s and 360s.

Feature Description – Time-Domain
MeanNN The mean of the RR intervals. x
SDNN The standard deviation of the RR intervals. x
SDANN1,
SDANN2,
SDANN5

The standard deviation of average RR intervals extracted from n-minute
segments of time series data (1, 2 and 5 by default). Note that these indices
require a minimal duration of signal to be computed (3, 6 and 15 minutes,
respectively) and will be silently skipped if the data provided is too short.

SDNNI1,
SDNNI2,
SDNNI5

The mean of the standard deviations of RR intervals extracted from n-
minute segments of time series data (1, 2 and 5 by default). Note that these
indices require a minimal duration of signal to be computed (3, 6 and 15
minutes respectively) and will be silently skipped if the data provided is
too short.

RMSSD The square root of the mean of the squared successive differences between
adjacent RR intervals. It is equivalent (although on another scale) to SD1,
and therefore it is redundant to report correlations with both.

SDSD The standard deviation of the successive differences between RR intervals. x
CVNN The standard deviation of the RR intervals (SDNN) divided by the mean

of the RR intervals (MeanNN).
CVSD The root mean square of successive differences (RMSSD) divided by the

mean of the RR intervals (MeanNN).
Medi-
anNN

The median of the RR intervals.

MadNN The median absolute deviation of the RR intervals.
MCVNN The median absolute deviation of the RR intervals (MadNN) divided by

the median of the RR intervals (MedianNN).
IQRNN The interquartile range (IQR) of the RR intervals.
SDRMSSD SDNN / RMSSD, a time-domain equivalent for the low Frequency-to-High

Frequency (LF/HF) Ratio.
Prc20NN The 20th percentile of the RR intervals.
Prc80NN The 80th percentile of the RR intervals.
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Table 5.3: continued

Feature Description – Time-Domain
pNN50 The proportion of RR intervals greater than 50ms, out of the total number

of RR intervals.
pNN20 The proportion of RR intervals greater than 20ms, out of the total number

of RR intervals.
MinNN The minimum of the RR intervals.
MaxNN The maximum of the RR intervals.
TINN A geometrical parameter of the HRV, or more specifically, the baseline

width of the RR intervals distribution obtained by triangular interpola-
tion, where the error of least squares determines the triangle. It is an
approximation of the RR interval distribution.

x

HTI The HRV triangular index, measuring the total number of RR intervals
divided by the height of the RR intervals histogram.

Feature Description – Frequency-Domain
ULF The spectral power of ultra-low frequencies (by default, .0 to .0033 Hz).

Very long signals are required for this indice to be extracted; otherwise, it
will return NaN.

VLF The spectral power of very low frequencies (by default, .0033 to .04 Hz). y
LF The spectral power of low frequencies (by default, .04 to .15 Hz). x
HF The spectral power of high frequencies (by default, .15 to .4 Hz). x
VHF The spectral power of very high frequencies (by default, .4 to .5 Hz). x
TP The total spectral power. x
LFHF The ratio obtained by dividing the low-frequency power by the high-

frequency power.
LFn The normalised low-frequency, obtained by dividing the low-frequency

power by the total power.
HFn The normalised high-frequency, obtained by dividing the low-frequency

power by the total power.
LnHF The log-transformed HF.

The features marked in the table 5.3 are basic features that are contained in all window sizes
and were used for the DL networks to train, except the VLF which only occurs in window size
180s and 360s. A detailed table with five exemplary entries of all features for the 60s window size
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is shown in Appendix B.

5.3 Feature preparation

In the first data preparation step the label and HRV features were aligned to the same 30s epoch.
The PSG labels were converted into numerical values for the classification purposes: Wake, N1,
N2, N3 and REM were mapped to 0,1,2,3, and 4 for five-stage classification, three and two-stage/
binary classification accordingly, while binary or 2 stage classification just compares between
wake and sleep epochs. Lastly, the time points labelled as artefacts in the ground truth labels were
dropped in both the HRV features and the ground truth.

Additionally, the HRV features which range from 103 to 10−2, were scaled to prevent gradient
problems for the CNN and other DL algorithms. The scaling was performed utilizing the Stan-
dardScaler method from the Scikit-learn package [Ped11] and applied in a way to scale the dataset
based on the selected test data. These steps are performed for each subject individually, except the
scaling, which was performed over the whole dataset.

After scaling a further sliding window was placed over the cleaned data to transform the data
accommodating the CNN input shape. The middle label of this window is located in the centre
of the sliding window, with the exception of the end points; here the middle label slides to the
start and end points. Depending on the architecture, different window sizes between five and 15
minutes were tested, resulting in containing 10, 15, 20, and 30 samples were used. Lastly, the
data was transformed into a torch tensor and reshaped form [N,L,C] into [N,C,L]. N is the
total recorded time for subject (recording length of data or batch size), C are the number of HRV
feature channels used, and L is the sample size of the sliding window (CNN window). Here, L is
the convolving dimension.

5.4 Training and testing

For the model training, the dataset was split into a train and test set using a 80/20 split. The data
split was performed between subjects to prevent data leaking from training to testing.

Further, the training data was split with a three-fold group k-fold cross-validation into a testing
and validation set, ensuring that a subject does not appear in both the validation and training set
simultaneously. During the training, the data was randomly loaded from the subjects in the training
set, while during validation the data was loaded sequentially into the model, to mimic the real
world data scenario. As a loss function, the weighted Cross entropy loss was employed, which



32 CHAPTER 5. METHODS

eliminates the need to apply a softmax function to the network output and one-hot-encoding of
the labels as the torch method handles this automatically. For binary classification, a weighted
BCEWithLogitsLoss was applied, which applies a sigmoid and binary cross entropy loss on the
logits of the network. The chosen loss functions are commonly used in ML and reported good
results for the applied use case. The class weights were established by dividing the most frequent
occurring class with the number of other classes to address the class imbalance.

For scoring the validation and test performance and loss, the Scikit-learn package was employed
using the matthews_corrcoef method as performance values [Ped11]. The Matthews correlation
coefficient (MCC) score is used in ML as a measure of the quality for binary and multi-class
classifications. It takes into account true positives and false positives as well as the true negatives
and false negatives. Generally, it is regarded as a balanced measure that can be used even if the
classes are of very different sizes. The MCC, in essence, is a value between −1 and +1, where
+1 represents a perfect prediction, 0 an average random prediction and −1 represents an inverse
prediction [Ped11]. Further scores calculated with the sk_metrics library from Scikit package
were accuracy, balanced accuracy, precision, recall, F1 score, cohen’s kappa, and specificity.
Additionally the confusion matrix for the tested classes were calculated.

The early stopping criteria could be reached after at least 60 epochs with either no improvement
of the loss, a performance of 0.0 or a negative development of the loss of 0.03. For testing and
validation, the data was loaded sequentially into the ML algorithms.

For the CNN, the different sliding window sizes of 10, 15, 20 and 30 were included as hyperpa-
rameters in model. The different window sizes for the calculated HRV features were tested for the
proposed CNN architectures in Section 5.5.1, as well for the LSTM and TCNN model. The models
were tested for three different classification granualities of sleep stages after the AASM classifica-
tion binary (Wake/sleep), three stage (Wake/REM/NREM) and five stage (Wake/N1/N2/N3/REM),
and the three diffrent HRV features window sizes (60s, 180s, and 360s).

5.5 Model description

This Section describes the general model structures for the DL algorithms CNN, LSTM, and
TCNN. It describes each model on an simple parameter configuration.

5.5.1 1D-CNN

This Subsection introduces the network architecture developed within this work. A 1D-CNN was
tested with two-block CNN with a layer structure as shown in Section 3.2.
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Figure 5.5 shows the network architecture used in this work. This baseline model was proposed
as the work of Zhao et al. and showed promising results [Zha17]. They stated a good accuracy
and good signal-to-noise ratio for 1D-CNN’s. The model used in this work has the addition of a
batch norm layer to have a more stable training, and a Dropout layer as a measurement against
overfitting and for improved generalisation of the network. The Dropout layer as well reduces
dependency on specific neurons by randomly dropping a percentage of them during the training.

Input
(N:64,C:8,L:20)

Conv1D
(in: 8,

out: 24,
kernel: 3)

ReLU

BN1D

AvgPool1D
(kernel: 3)

Dropout
(0.2)

Conv1D
(in: 24,
out: 72,

kernel: 3)

ReLU

BN1D

MaxPool1D
(kernel: 3)

Dropout
(0.2)

FC
(in: 216,
out: 148)

FC
(in: 148,
out: 5)

block one block two

Figure 5.5: Example of a two-block CNN model architecture showing the input and output sizes
(in, out) of the layers and the kernel size of each convolution, pooling, dropout and FC layer. The
general input size of the model is determined by N: the batch size, C: the number of HRV features
and L: the size of the CNN window, in this case, 20. The final FC layer has the class numbers as
output, here 5.

Further, a model with four convolution blocks was tested; the general structure is shown in Fig.
5.6. While the architecture is generally the similar to the previously stated two block 1D-CNN,
the output layers from block 2 and 3 with an are combined with each other to preserve dimensions
for the fourth block of the CNN. The final FC layers has the same size as the smaller network.

5.5.2 LSTM

The provided LSTM network architecture, is shown in Figure 5.7. The network consist of a
memory cell accepting the data sequence, the cell state (cn) and hidden state (hn), which are
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Figure 5.6: Structure of a four-block CNN, following with the input and output sizes (in, out) and
the kernel size of each convolution layer, pooling layer and dropout values. Shown is an example
input, with a batch size (N) of 64, a feature channel size (C) of 8, and a length of sliding window
(L) of 20, a kernel size of 3 for the average and 2 for the max pooling layer, the dropout value is
20%, and the class number is 5.

updated after each layer of the LSTM. The final hidden state output is then passed through a ReLU
function to introduce non-linearities and two dense layers for the final classification of the sleep
phases.

5.5.3 TCNN/ TCN

The provided TCNN architecture is shown in Fig. 5.8. It shows the model structure for a temporal
block. Each block contains two sequences of one 1D-CNN layer, a chomp layer for trimming
the input tensor to remove a number of elements from the last dimension followed by a ReLU
activation and dropout layer. The output of the last sequence is added with a downsampled input
to the temporal block itself and fed into a ReLU activation function to be the input for to the next
temporal block or a FC layer for the final classification of the sleep stages. The number of layers is
determined by the channel size and hidden number.
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Figure 5.7: Structure of the provided LSTM model, for one LSTM layer, hidden state (hn) is and
cell state are initialised with h0, c0 the states passing through the cell and updated within. For final
class prediction the LSTM output is fed into two dense layers (FC Dense 1,2) between two ReLU
and dropout with a value of 0.2. Finally, a softmax function gives the final class probabilities.

5.6 Hyperparameter search

A grid search was employed to find the best set of hyperparameters for the respective models. The
best set of hyperparamter was chosen Pareto front between from the lowest mean and standard
deviation (Std) validation loss. This gives a range of values that have the lowest mean and Std loss
helping to chose a value minimising the two criteria. The best model was finally taken from the
best performing fold of the best parameter set.

For the CNN, the hyperparameter search was performed with the sweep library3 containing in
the wandb package [Bie20]. The search contained the different sliding window sizes for the CNN
time sample, the batch size, the kernel size of both the layer and batch norm, the kernel application
time and the learning rate. For each HRV sliding window (60s, 180s, and 360s) and class (binary,
three-stage, and five-stage) a new grid search was performed, resulting in 9 sets of hyperparameter
for each model.

The hyperparameter search for the LSTM and temporal convolutional network (TCN) was
performed with optuna library containing in tcpc package [Küd23]. For these models the best

3https://docs.wandb.ai/ref/python/sweep

https://docs.wandb.ai/ref/python/sweep
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Figure 5.8: Structure of the TCNN model with one temporal block and a FC layer for final
classification. The number of temporal blocks is dependent on the channel number. Each temporal
block contains two 1DCNN layers (Conv1D), followed by a trimming layer (Chomp1D), an ReLU
activation and a dropout layer. The output of the second convolution block is added with a
downsampled input of the temporal block and passed on to an ReLU and finally into the FC layer
for the final prediction.

parameter set was chosen after the best MCC performance in the during validation. The LSTM,
the hyperparameter search included different hidden layer sizes, number of layers, sequence length,
learning rates and batch sizes. While the TCNN, search included parameters for the channel
number, the hidden layers, kernel and batch size, dropout values and learning rate.

The table 5.4 list the possible combination sets of hyperparameters used for the models.
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Table 5.4: Hyerparameter sets for the models employed in this work (CNN, LSTM, and TCNN)

Model Parameters Values
two block CNN window ccn 10, 15, 20,

max pooling kernel size 2, 3
average pooling kernel
size

2, 3

kern application 3, 4, 5
learning rate 0.001, 0.0005

four block CNN window ccn 15, 20, 30
max pooling kernel size 2, 3
average pooling kernel
size

2,3

kern application 3, 4,5
learning rate 0.001, 0.0005

LSTM hidden size range(4, 600) step = 4
number layers 1, 5
Sequence length 21, 51, 101
learning rate range(0.0001, 0.005)
batch size 32, 64, 128, 256, 512

TCN number channels 2, 6
hidden layers 8, 512, 32
kernel size 2, 5
dropout range(0.1, 0.5), step=0.1
learning rate 0.0001, 1
batch size 64, 128, 256





Chapter 6

Results

This chapter provides the results of the methods mentioned tests, following the structure of the
previous chapter. First, we see the grid search results for the optimal threshold to classify the
heartbeats based on the probability distribution of the bi-directional LSTM in Section 6.1. Section
6.2 shows the results of the sleep staging for the models, the found hyperparameter sets for the
respective class granularities and different window sizes that were used to compute the HRV.
Section 6.3 compares the CNN, TCN and LSTM results with each other.

6.1 Heartbeat prediction

Five different values (0.24, 0.26, 0.28, 0.30, 0.32) were tested to find an optimal parameter for the
heartbeat classification. For the decision of a good threshold, the f1 score was used, representing
the harmonic mean between precision and recall. It ranges from one to zero, with one being the
best score, and it can be calculated with the formula

f1 =
2tp

(2tp) + fp+ fn
(6.1)

The precision is the ratio between tp/(tp+ fp), where tp is the number of true positives and fp is
the number of false positive values. It represents the classification performance with respect to the
wrong classification of extra heartbeats. The recall is the ratio between tp/(tp+ fn), where fn is
the number of false negative labels. It is the ability to find all heartbeats within the signal [sci24].
The overall scores are shown in Tab. 6.1, while the individual scores for the selected participants
are in Appendix C.

The best overall F1 score reveals a threshold of 0.24 as the best performing parameter for the
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Table 6.1: Overall Comparison of F1, precision and recall scores for different height thresholds,
Tt: Total True ECG Beats, Tpb: Total predicted beats, Tp: True positives, Fn: False negatives, Fp:
False positives

Threshold Tt Tpb Tp Fp Fn F1 Precision Recall
0.24 146175 141902 115798 26104 30377 0.803 0.816 0.792
0.26 146175 137904 113349 24555 32826 0.798 0.821 0.775
0.28 146175 133449 110312 23137 35863 0.789 0.826 0.754
0.30 146175 128589 106721 21868 39454 0.776 0.829 0.730
0.32 146175 123108 102448 20660 43727 0.760 0.832 0.700

heartbeat classification. This involves a trade-off between detecting more overall heartbeats and
increasing the number of false positive beats. This reduces precision, opposing the detection of
fewer heartbeats and false positives, resulting in improved precision. However, this trade-off is
balanced by an increase in recall, as more otherwise false negative beats are found with a lower
threshold. The threshold of 0.24 has a f1 score of 80, 39% and results in 97, 07% of all heartbeats
of which 81, 60% are correctly detected and 18, 39% are falsely detected beats. In comparison,
the f1 score for a threshold level of 0.32 is 76% and results in only 84, 21 % of all beats with a
higher rate of true positive heartbeats, 83, 21%, and false positive beats of 16, 78%.

An inspection of the individual subjects reveals that the probability function of the different
radar nodes often does not return a peak at the same time point but with a slight offset around
the actual heartbeat, depending on where the subject is lying in bed. This leads to broader and
lower peaks when simply summating the individual heartbeat probabilities. As a result, a lower
threshold has to be set to find more heartbeats. However, this increases the chance of capturing
false heartbeats.

6.2 Hyperparameter search results

This Section presents the hyperparameter search of the different models(two block 1D-CNN, four
block 1D-CNN, LSTM and TCN); shown are the testing metrics and confusion matrix for each
class granularity after the AASM sleep stage classification binary is Wake/sleep, three-stage is
Wake/NREM/REM, and five stage is Wake/N1/N2/N3/REM sleep, and different window size to
calculate the HRV (60s, 180s, and 360s).
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6.2.1 Two block 1D-CNN grid search

Performance Analysis

The grid search results for two block 1D-CNN are summarised in Table 6.2. The binary classifica-
tion reveals the best overall performance of HRV window sizes. The highest MCC score of 0.203
and a Std of 0.073 is found for a HRV window size of 60s. The corresponding F1 score is 0.732
with a variance of 0.1. This indicates a good balance between precision and recall. For the higher
class granularity, the lowest variance in the metrics is observed for the 60s window size. As a
general trend, we see a slight decrease in all metrics for higher window sizes and an increase in
the standard deviation. For three-stage and five-stage, the 180s HRV window size shows slightly
better MCC performance compared to the 60s window size. The 60s and 180s window sizes
performed better across all metrics than the 360-second window size, particularly for three-stage
and five-stage sleep classifications.

Confusion matrix

To better understand the metrics, the figures 6.1, 6.2 and 6.3 are picturing the corresponding
confusion matrix for the different HRV window sizes and classes. First, considering the binary
stage confusion matrix in Figure 6.1, we see the moderate ability to distinguish between Wake
and sleep across all window sizes. For the 180s window size, the model finds slightly more sleep
stages than for the other window size. Wake stage predicting is slightly decreasing for higher
window sizes.

The three-stage confusion matrix in Figure 6.2 consistently performs well in classifying NREM.
However, it shows an overall difficulty in distinguishing between Wake and NREM, as well as
between NREM and REM. Across all window sizes, REM sleep has the lowest true positive
prediction. In comparison, the highest true positive prediction of NREM and REM sleep occurs
for a window size of 60s. 180s had the highest true positive prediction of the Wake state.

The five-stage confusion matrix is shown in Figure 6.3. While it reveals a higher true prediction
of the Wake state, the miss classification as Wake significantly increases for larger window sizes.
The N1 stage is consistently poorly detected but also has low false negatives. The N2 stage has
the highest true positive prediction for a 60s window size and a high value for the other window
sizes. However, the model behaves similarly to the three-stage classification, with difficulties in
distinguishing between Wake and N2 and N2 and REM. We see that the model predicts the majority
classes Wake and N2 well, but misclassifies the minority classes N1, N3, and REM repeatedly
as N2. For larger HRV window sizes, increasing difficulty in differentiating between Wake and
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Table 6.2: Two block CNN mean metrics of test results and standard deviation for all classes and
HRV windows

Class HRV Window 60s 180s 360s

Wake/Sleep

Accuracy 0.641± 0.088 0.637± 0.033 0.541± 0.063
Bal. Accuracy 0.631± 0.061 0.628± 0.065 0.580± 0.087

Precision 0.868± 0.109 0.864± 0.115 0.848± 0.132
Recall 0.651± 0.135 0.651± 0.047 0.551± 0.113

F1 0.732± 0.100 0.737± 0.047 0.652± 0.051
Kappa 0.167± 0.057 0.163± 0.081 0.089± 0.085

Specificity 0.612± 0.204 0.605± 0.170 0.608± 0.231
MCC 0.203 ± 0.073 0.196 ± 0.096 0.122 ± 0.123

Wake/NREM/REM

Accuracy 0.477± 0.062 0.478± 0.088 0.434± 0.055
Bal. Accuracy 0.401± 0.053 0.424± 0.101 0.379± 0.065

Precision 0.613± 0.115 0.609± 0.136 0.577± 0.104
Recall 0.477± 0.062 0.478± 0.088 0.434± 0.055

F1 0.508± 0.082 0.503± 0.122 0.468± 0.076
Kappa 0.092± 0.043 0.087± 0.045 0.045± 0.041

Specificity 0.489± 0.146 0.482± 0.122 0.460± 0.150
MCC 0.103± 0.044 0.105 ± 0.062 0.049± 0.052

Wake/N1/N2/N3/REM

Accuracy 0.312± 0.066 0.284± 0.069 0.264± 0.066
Bal. Accuracy 0.261± 0.020 0.255± 0.026 0.221± 0.041

Precision 0.442± 0.083 0.481± 0.148 0.418± 0.116
Recall 0.312± 0.066 0.284± 0.069 0.264± 0.066

F1 0.338± 0.061 0.315± 0.077 0.290± 0.079
Kappa 0.075± 0.020 0.079± 0.040 0.041± 0.041

Specificity 0.640± 0.084 0.646± 0.080 0.634± 0.082
MCC 0.084± 0.025 0.092 ± 0.048 0.046± 0.045

REM starts to show frequently misclassifying Wake for REM. The highest REM prediction can be
observed for the 180s window size.

Hyperparmeter sets

The chosen hyperparameter sets for the two block 1D-CNN are shown in Table 6.3. The class
granularities and HRV window sizes are stated. The sets were chosen from the Pareto front
between the mean loss and Std mean loss for all folds. To maximise performance, the set with the
lowest mean loss was picked. Despite the higher variability of the loss, we see a low loss for the
binary state during the training in accordance with the test results. In contrast to the test results,
the variance decreases for the higher HRV window size. This is observable in all class grains. The
relatively high variability of the losses indicates a high dependency on the training validation split.
We can also see that all classes have a virtually equal set with slight differences. For the sliding
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Figure 6.1: Two block 1D-CNN confusion matrix for all HRV window sizes and Wake/sleep
classification

Figure 6.2: Two block 1D-CNN confusion matrix for all HRV window sizes and Wake/NREM/REM
classification

Figure 6.3: Two block 1D-CNN confusion matrix for all HRV window sizes and
Wake/N1/N2/N3/REM classification
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Table 6.3: Best hyperparameter set combination for two block 1D-CNN, with the acronyms Max
pooling (Maxp), Average pooling(Avgp)

Class number binary 3stage five stage
HRV windows: 60s 180s 360s 60s 180s 360s 60s 180s 360s

Parameters:
Window ccn 20 20 20 10 15 15 20 20 15

Maxp. kernel 3 3 3 2 3 3 2 3 3
Avgp. kernel 2 3 3 2 2 3 2 3 3

Kern application 3 5 4 5 5 5 4 5 5
Learning rate 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
Mean val loss 0.3499 0.3596 0.3523 0.6851 0.711 0.6754 1.07 1.068 1.075

Std val loss 0.03989 0.02916 0.0267 0.1264 0.1031 0.09823 0.1627 0.06738 0.1212

CNN window size, a higher window size dominates overall classes and HRV window sizes, and a
low learning rate occurs in all sets. Also, a higher value for the kernel application is predominant.
This hints that a larger network is preferable to a smaller one as the kernel application increases the
weights and biases of the model. Higher values for the CNN window size and kernel application
seem desirable to lower the loss. The kernel size for the max pooling layer appears to be ideal at
three. At the same time, for the window sizes of 180s and 360, a higher average pooling kernel of
three seems beneficial, and for the 60s window, a lower size is indicated to improve the loss.

6.2.2 Four block 1D-CNN grid search

Performance Analysis

The grid search results for the four block 1D-CNN are presented in Table 6.4. The Table lists
the metrics for the different class granularities and HRV window sizes. The best performing
classification is the binary class. We achieve the highest MCC of 0.194 and the relative lowest Std
of 0.072 for the HRV window size of 360s. However, for three- and five-stage classification, the
model performs better for a window size of 60s, showing overall higher metrics than for a window
size of 180s and 360s.

Confusion matrix

The figures 6.4, 6.5, and 6.6 picturing the corresponding confusion matrix for the class grains and
the HRV windows. The Figure 6.4 shows the binary confusion matrix. The prediction for true
Wake states variates through the window sizes, with a decrease during the 180s. The highest true
predicted Wake states are seen for a 60s window size. However, the frequent true predicted sleep
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Table 6.4: Four block CNN mean metric of test results and standard deviation for all classes and
HRV windows

Class HRV Window 60s 180s 360s

Wake/Sleep

Accuracy 0.558± 0.082 0.600± 0.026 0.597± 0.045
Bal. Accuracy 0.631± 0.061 0.611± 0.064 0.629± 0.049

Precision 0.874± 0.134 0.855± 0.127 0.867± 0.110
Recall 0.517± 0.134 0.607± 0.038 0.606± 0.092

F1 0.638± 0.124 0.704± 0.044 0.702± 0.032
Kappa 0.122± 0.057 0.130± 0.060 0.152± 0.072

Specificity 0.712± 0.168 0.614± 0.161 0.652± 0.169
MCC 0.173 ± 0.079 0.164 ± 0.083 0.194 ± 0.072

Wake/NREM/REM

Accuracy 0.483± 0.083 0.494± 0.049 0.381± 0.069
Bal. Accuracy 0.432± 0.078 0.430± 0.092 0.410± 0.069

Precision 0.633± 0.129 0.623± 0.117 0.594± 0.115
Recall 0.483± 0.083 0.494± 0.049 0.381± 0.069

F1 0.509± 0.105 0.520± 0.086 0.410± 0.077
Kappa 0.118± 0.049 0.101± 0.082 0.059± 0.049

Specificity 0.502± 0.136 0.488± 0.145 0.468± 0.142
MCC 0.145 ± 0.064 0.119± 0.093 0.074± 0.060

Wake/N1/N2/N3/REM

Accuracy 0.332± 0.035 0.281± 0.081 0.275± 0.095
Bal. Accuracy 0.311± 0.097 0.240± 0.047 0.246± 0.054

Precision 0.479± 0.133 0.448± 0.128 0.472± 0.165
Recall 0.332± 0.035 0.281± 0.081 0.275± 0.095

F1 0.356± 0.061 0.304± 0.088 0.287± 0.111
Kappa 0.107± 0.035 0.053± 0.028 0.062± 0.041

Specificity 0.660± 0.081 0.639± 0.076 0.643± 0.080
MCC 0.121 ± 0.047 0.061± 0.031 0.074± 0.054

stages are found for the window size of 180s and with the highest misclassification for the 60s

window.

In the three-stage classification matrix, in Figure 6.5, we see the highest true NREM sleep
prediction at the 180s window size and the lowest for 360s. As for the classification of Wake and
REM sleep, we see similar to the two block CNN a difficulty distinguishing Wake and NREM
likewise NREM and REM from each other. The highest true predictions for REM and NREM are
found for the window size of 180s. While the highest true classification for the Wake state occurs
for the window size of 360s. For this window size, the NREM sleep is also frequently misclassified
as Wake or REM, showing a corresponding behaviour with the three-stage classification from the
two block CNN.

The five-stage confusion matrix in Fig 6.6 shows overall window sizes a consistent true
prediction of the Wake state with a slight increase. The misclassification shifts from N3 and REM
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to N1 and N2 across the higher window sizes, and it remains significant. N2 has relatively high
true positive prediction overall window sizes and high misclassification rates. N1, N3 and REM are
consistently poor detected over the HRV window sizes. This classes show a high misclassification
rate in the other stages.

Figure 6.4: Four block 1D-CNN confusion matrix for all HRV window sizes and Wake/sleep
classification

Figure 6.5: Four block 1D-CNN confusion matrix for all HRV window sizes and
Wake/NREM/REM classification

Hyperparameter sets

Table 6.5 shows the best hyperparameter set from the four block 1D-CNN gird search for the class
and window combinations. At inspection of the sets, we find that a high sliding window size is
present in all sets; further, the kernel size of three is dominant for the max and average pooling
layers. A higher learning rate seems to produce lower losses. Lastly the kernel application reduced
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Figure 6.6: Four block 1D-CNN confusion matrix for all HRV window sizes and
Wake/N1/N2/N3/REM classification

with a higher class granularity and HRV window size. Further, the Std overall classes are relatively
high.

Table 6.5: Best hyperparameter set combination for four block 1D-CNN, with the acronyms max
pooling (Maxp), average pooling (Avgp)

Class number binary three-stage five-stage
HRV windows: 60s 180s 360s 60s 180s 360s 60s 180s 360s

Parameters:
Window ccn 30 15 30 30 30 30 30 30 30

Maxp. kernel 3 3 3 2 3 3 3 3 2
Avgp. kernel 3 2 3 3 3 3 3 3 3

Kern application 5 3 4 4 3 3 3 3 2
Learning rate 0.0005 0.001 0.0005 0.0005 0.001 0.001 0.001 0.0005 0.001
Mean val loss 0.3473 0.3609 0.3524 0.7118 0.6931 0.6066 1.05 1.002 1.031

Std val loss 0.0416 0.0320 0.0231 0.0693 0.0810 0.0537 0.1123 0.0742 0.1169

6.2.3 LSTM grid search

Performance analysis

After performing the optuna hyperparameter search on the LSTM we found the results shown
in Table 6.6. The classification of binary, three-stage, five-stage are noted over the metrics. We
see very bad performance metrics across all classes and window sizes, with the best MCC for a
window size of 180s at five-stage classification 0.139 and a Std of 0.081 but a low F1 score of
0.301 with a high Std of ±0.147. For two-stage classification, we have a very high specificity of
0.929 for a 60s window and 0.96 for a window size of 180s. Notably we see a very slight negative
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value for the 180s for binary and three stage classification and 60s for the five stage indicating
an inverse prediction, further the for 360s wee see a value significant closer to zero, this also is
present in the confusion matrix.

Table 6.6: LSTM results for all classes and HRV windows

Class HRV Window 60s 180s 360s

Wake/Sleep

Accuracy 0.279± 0.136 0.204± 0.134 0.441± 0.220
Bal. Accuracy 0.526± 0.048 0.498± 0.002 0.528± 0.053

Precision 0.539± 0.435 0.359± 0.423 0.838± 0.123
Recall 0.122± 0.133 0.036± 0.085 0.425± 0.321

F1 0.191± 0.196 0.054± 0.123 0.486± 0.289
Kappa 0.019± 0.031 −0.001± 0.003 0.049± 0.103

Specificity 0.929± 0.058 0.960± 0.087 0.632± 0.299
MCC 0.038± 0.068 −0.006± 0.019 0.064 ± 0.107

Wake/NREM/REM

Accuracy 0.388± 0.142 0.289± 0.164 0.333± 0.212
Bal. Accuracy 0.411± 0.088 0.381± 0.081 0.421± 0.091

Precision 0.607± 0.110 0.582± 0.176 0.569± 0.286
Recall 0.388± 0.142 0.289± 0.164 0.333± 0.212

F1 0.405± 0.118 0.262± 0.183 0.302± 0.237
Kappa 0.082± 0.068 0.041± 0.066 0.101± 0.139

Specificity 0.488± 0.159 0.475± 0.142 0.501± 0.163
MCC 0.095± 0.072 0.064± 0.064 0.132 ± 0.140

Wake/N1/N2/N3/REM

Accuracy 0.395± 0.151 0.335± 0.137 0.184± 0.139
Bal. Accuracy 0.184± 0.043 0.281± 0.044 0.156± 0.061

Precision 0.299± 0.173 0.405± 0.177 0.135± 0.169
Recall 0.395± 0.151 0.335± 0.137 0.184± 0.139

F1 0.300± 0.121 0.301± 0.147 0.143± 0.153
Kappa −0.012± 0.067 0.115± 0.076 0.008± 0.048

Specificity 0.593± 0.164 0.671± 0.102 0.631± 0.076
MCC −0.010± 0.097 0.139 ± 0.081 0.007± 0.060

Confusion matrix

The Figures 6.7, 6.8, and 6.9 show the corresponding confusion matrix for the classes and the
HRV window sizes. When comparing the binary confusion matrix in Figure 6.7 with each other,
we see the highest detection of actual sleep stages for the 360s window size. However, most sleep
stages are still misclassified as Wake, while the true prediction of the Wake state decreases with
increasing window size.

The three-stage confusion matrix in Figure 6.8 shows an improvement of the true positive
rate for Wake state prediction across the window size. For the 60s window, we see the highest
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true positive rate for NREM and REM sleep, while both are still considerably misclassified. The
NREM and REM stages are consistently misclassified as Wake for higher window sizes, and the
accurate prediction of the REM stage is very low across all window sizes.

For the five-stage classification depicted in Figure 6.9, we see the model has a high misclassifi-
cation for all HRV window sizes. For 60s, most Wake, N1 and N3 are not predicted at all and are
misclassified as N2 or REM, with few correct predictions for N2 and REM. While for 180s, some
improvements for Wake and N2 prediction are to note. N1 and N3 remain challenging to predict
correctly. Moreover, there is a high misclassification between Wake and N2. The window size
360s has improvements in predicting Wake and REM sleep but confuses N1, N2, and N3 to Wake
or REM.

Figure 6.7: LSTM confusion matrix for all HRV window sizes and Wake/sleep classification

Figure 6.8: LSTM confusion matrix for all HRV window sizes and Wake/NREM/REM classifica-
tion
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Figure 6.9: LSTM confusion matrix for all HRV window sizes and Wake/N1/N2/N3/REM classifi-
cation

Hyperparameter sets

The found hyperparameter sets for the classes and windows are shown in table 6.7. We see from
the different sequence lengths provided at testing that the test values’ lower side is predominant.
For the higher class granularity, a bigger hidden size is dominant. We see an increase in layer
number the more classes the model has to distinguish. The learning rate is also on the lower end
of the spectrum. While overall HRV window sizes, a high batch size is present except for the 180s
window.

Table 6.7: Best hyperparamter set combination for LSTM

Class number binary three-stage five-stage
HRV windows: 60s 180s 360s 60s 180s 360s 60s 180s 360s

Parameters:
Sequence length 101 51 21 21 51 51 51 51 101

Hidden size 420 68 80 296 436 528 440 48 592
Layer number 1 1 1 1 4 3 4 5 1
Learning rate 0.0001 0.0005 0.0009 0.0004 0.0001 0.0001 0.0020 0.0002 0.0003

Batch size 512 32 512 512 512 512 512 512 512
MCC val 0.1241 0.0195 0.2287 0.1088 0.1664 0.1454 0.0644 0.1057 0.0826

6.2.4 TCN grid search

Performance analysis

The test results for the TCN model are listed in Table 6.8; presented are the class stages and
HRV window sizes over the metrics. We see the best MCC value of 0.113± 0.067 for three-stage
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classification and a 360s window. For binary the highest MCC score of was 0.07± 0.069 reached
for a 60s HRV window size and for five stage the 360s window produces a MCC of 0.099± 0.097.
Overall, the HRV window size of 360s performs better than the lower sizes except for the binary
classification.

Table 6.8: TCN results for all classes and HRV windows

Class HRV Window 60s 180s 360s

Wake/Sleep

Accuracy 0.496± 0.049 0.297± 0.129 0.249± 0.118
Bal. Accuracy 0.552± 0.051 0.520± 0.051 0.513± 0.010

Precision 0.824± 0.137 0.817± 0.157 0.865± 0.151
Recall 0.489± 0.094 0.200± 0.161 0.105± 0.099

F1 0.601± 0.059 0.288± 0.144 0.168± 0.120
Kappa 0.045± 0.044 0.018± 0.049 0.008± 0.008

Specificity 0.615± 0.130 0.840± 0.156 0.920± 0.112
MCC 0.070 ± 0.069 0.033± 0.100 0.040± 0.028

Wake/NREM/REM

Accuracy 0.509± 0.125 0.454± 0.142 0.357± 0.158
Bal. Accuracy 0.381± 0.057 0.353± 0.017 0.419± 0.065

Precision 0.495± 0.229 0.581± 0.106 0.634± 0.170
Recall 0.509± 0.125 0.454± 0.142 0.357± 0.158

F1 0.474± 0.170 0.442± 0.151 0.341± 0.184
Kappa 0.023± 0.046 0.020± 0.031 0.078± 0.059

Specificity 0.464± 0.148 0.457± 0.143 0.487± 0.144
MCC 0.032± 0.063 0.018± 0.040 0.113 ± 0.067

Wake/N1/N2/N3/REM

Accuracy 0.344± 0.135 0.299± 0.132 0.350± 0.143
Bal. Accuracy 0.237± 0.040 0.227± 0.035 0.253± 0.055

Precision 0.463± 0.120 0.412± 0.123 0.468± 0.116
Recall 0.344± 0.135 0.299± 0.132 0.350± 0.143

F1 0.320± 0.118 0.286± 0.127 0.336± 0.121
Kappa 0.059± 0.044 0.033± 0.055 0.082± 0.082

Specificity 0.643± 0.063 0.636± 0.067 0.662± 0.074
MCC 0.073± 0.058 0.040± 0.059 0.099 ± 0.097

Confusion matrix

The Figures 6.10, 6.11, and 6.12 picturing the confusion matrix for the class numbers and HRV
window sizes. In figure 6.10, we see that for a higher HRV window size, we have an increasing
number of correctly predicted Wake states but a significant decrease in the correct classification
for the sleep stages.

For the three-stage classification, we observe an increase in correctly predicted Wake stages
with an increase in the window size. Further, we notice an increasing misclassification between



52 CHAPTER 6. RESULTS

NREM and Wake state for higher HRV windows. While the REM stage is poorly classified for
all window sizes. For the window size of 60s, it tends to be misclassified as NREM stage, while
for the higher window size, this shifts to Wake. The NREM stage has the highest number of true
positives but also a high number of false positives and false negatives.

The confusion matrix 6.12 shows that over all window sizes we have many Wake states falsely
classified as N2. For the N1 stage, there are very few correct predictions, with a slightly higher
correct prediction for the window size of 180s; the N2 stage shows the highest correct prediction
but is often misclassified for Wake, N3 or REM sleep. The correct prediction of N3 is increasing
with a higher window size but tends to be misclassified for N2. REM sleep classification is
increasing for 360s. However, more often, many samples are misclassified as N1 or Wake. The
model leans to the majority group.

Figure 6.10: TCN confusion matrix for all HRV window sizes and Wake/sleep classification

Figure 6.11: TCN confusion matrix for all HRV window sizes and Wake/NREM/REM classification



6.2. HYPERPARAMETER SEARCH RESULTS 53

Figure 6.12: TCN confusion matrix for all HRV window sizes and Wake/N1/N2/N3/REM classifi-
cation

Table 6.9: Best hyperparameter set combination for TCN

Class number binary three-stage five-stage
HRV windows: 60s 180s 360s 60s 180s 360s 60s 180s 360s

Parameters:
Channel number 5 6 3 6 4 5 5 4 2
Hidden number 200 328 424 488 232 488 72 8 168

Kernel size 4 5 4 3 5 3 3 2 4
Dropout 0.5 0.1 0.3 0.2 0.4 0.2 0.3 0.1 0.5

Learning rate 0.5552 0.6764 0.0308 0.7709 0.6028 0.9423 0.0018 0.0017 0.0009
Batch size 256 64 256 128 128 256 256 256 256
MCC val 0.0473 0.05928 0.07673 0.0448 0.0488 0.0958 0.0551 0.0897 0.1062

Hyperparemeter sets

The best performing hyperparameter set is shown in Table 6.9, the class numbers and HRV window
combinations are listed over the hyperparameter sets. We notice that the channel number is
decreasing with a higher HRV window size and class number. At the same time, the hidden
number is decreasing for higher class grains but generally increasing for larger HRV window sizes.
The dropout for the 60s window decreases with the higher class number while the value for 360s
increases; contrasting for a 180s window size the dropout value peaks for three-stage classification.
The value of the learning rate is higher for the lower class numbers while finding a minimal value
for five-stage classification and a window size of 360s. The batch size is dominant, with a high
value over all classes and window sizes.
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6.3 Model comparison

For the following Section comparison of the presented models, two block 1D-CNN, four block
1D-CNN, LSTM, and TCN performance metrics for the different class granularity and the HRV
window size of 60s, 180s and 360s. Figure 6.13 shows the binary classification metrics, Figure
6.14 pictures the three stage metrics, and Figure 6.15 states the five stage metrics. As a general
tend we observe in the Figures that the four block CNN has the best MCC performance across all
HRV window and classes. We observe as well a general higher values in the metrics foe the CNN
models with lower variability. However, the overall low Kappa and MCC sores while better than
random guessing showing the need for improvements to achieve stronger performances.

Further we see an relative high variability for in the precision and recall metrics overall classes
and HRV windows, specially for the LSTM. We can further see a decrease for the metrics the
higher the numbers of sleep stages the models need to predict, but an increase in Specificity. In
terms of recall and F1 score, this indicating it struggles to correctly identify positive instances.
While the different HRV window size have a varying influence on the individual means of the
metrics metrics, the range of the values is not as influences specially the MCC score is relatively
stable for the classes granulites. For the CNN models the HRV window size has only a slight and
varying influence on the metrics metric ranges. In contrast the HRV window size has a higher
influence on th values for the LSTM and TCN.

Binary class comparison

For the binary classification in Figure 6.13 the CNN models both shows across all window sizes
generally high values considering the balanced accuracy, precision, recall, and F1 scores showing
the models are able to detect the wake and sleep state. Comparing to the CNNs, the LSTM only
shows a precision in the same range for the window size of 360s with a high variability in recall,
specificity and F1 score. It has however, the highest specificity of all models for the smaller
window sizes. The TCN shows comparable precision and balanced accuracy values in all window
sizes but with a significant lower recall and F1 for a bigger HRV window size than 60s, for which
in contrast the specificity are very high. For the CNN models we see the lowest variability in the
metrics for the window size of 180s. Here the two block CNN shows a higher MCC than the four
block CNN.

Considering Figure 6.13 we observe across the HRV window sizes a similar trend in behaviour
for the models. While the balanced accuracy shows that the models are able to that the models
perform a an overall low score for the MCC score, but the four block CNN performs best across
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window sizes followed by TCN and LSTM. It further has the lowest variance

Three stage comparison

For the three stage classification we see in figure 6.14 we see an assimilation for the metrics values
over the window size, for the LSTM and TCN the variance is increasing with a higher window size.
With considerably lower values for the balanced accuracy, precision, recall, F1 and specificity
scores.

Five stage comparison

For the 5 stage classification in Figure 6.15 we see the LTSM model has the lowest performance
for the window sizes of 60s and 360s while for the 180s window all models performs equality
over the metrics except the LTSM has the highest MCC score. For the other window size the TCN,
and CNN models are overall in the same range. The MCC and differing with the highest values
for the four block CNN.
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Figure 6.13: Comparing Boxplot for the binary classification (Wake/sleep) for the different HRV
window sizes (60s, 180s, and 360s). The models (two block 1D-CNN (CNN), four block 1D-CNN
(CNN4), LSTM and TCN) are pictured over the metrics (Accuracy, Balanced (Bal.) accuracy,
Precision, Recall, F1, Kappa, Specificity and MCC)
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Figure 6.14: Comparing Boxplot for the three stage classification (Wake/NREM/REM) for the
different HRV window sizes (60s, 180s, and 360s). The models (two block 1D-CNN (CNN), four
block 1D-CNN (CNN4), LSTM and TCN) are pictured over the metrics (Accuracy, Balanced
(Bal.) accuracy, Precision, Recall, F1, Kappa, Specificity and MCC)
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Figure 6.15: Comparing Boxplot for the five stage classification (Wake/N1/N2/N3/REM) for the
different HRV window sizes (60s, 180s, and 360s). The models (two block 1D-CNN (CNN), four
block 1D-CNN (CNN4), LSTM and TCN) are pictured over the metrics (Accuracy, Balanced
(Bal.) accuracy, Precision, Recall, F1, Kappa, Specificity and MCC)



Chapter 7

Discussion

This chapter discusses the results and limitations of our work, following the general structure of
the Methods.

Both CNN models showed the effect of dataset imbalance, evidenced by the high disparity of
F1 score and MCC for the two block CNN 0.70 vs. 0.203 for the binary classification of the 60s

HRV window and a similar different for the four block CNN. We see distribution also across the
lager HRV window size and to a lower degree in higher class granularity’s. Further supported
is this by the high variance during the cross validation and fluctuations in test results across all
models. This also indicates a dependency on train split as the test split for all models is the same.

The superior performance of the four block CNN compared to the two block CNN suggests
that a bigger network structure is preferable for classifying sleep stages. This is supported by the
high kernel application during hyperparameter selection for the two block CNN. Literature that
features CNN also reported the use of higher sized networks with good performances. However,
the hyperparameter sets for the four layer CNN only features moderate kernel applications. The
CNN size of four blocks therefore for seem promising but needs more testing.

However our findings, showed the need to improve the performance of all models as the
MCC is indicates only slightly better performance specially for the LSTM and TCN. The three
stage classification confusion matrix for all models but specially the one from the CNN’s are
highlighting the difficulties to differentiate between sleep stages, specially Wake and REM are hard
to distinguish. While the NREM sleep is relatively reliable detected, as the heart rate reaches the
lowest point during the NREM sleep. REM and Wake state are both identified with a higher HRV
than NREM sleep. Secondly we a shift from in the misclassification of the classes of the higher
window sizes. This highlights the the importance of additional features to enhance the difference
between the sleep stage and showing that with only the HRV features it is hard to predict the
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sleep phases. Adding respiratory waves or body movements is expected to significantly improve
classification results, as the explored in the literature. It is common to used approaches with a
combination of bio-signals such as the body movements and respiratory waves, reported are results
around 80% or higher sleep stage accuracy [Lee24; Par24; Hon18].

As expected the more sleep phases the network had to identify, the worse it performs the task.
This can be deducted from the overall higher results for binary classification. The CNN results
further show that despite the small size of the dataset, for sleep classification a more complex
network is preferred.

For the purpose of PD early diagnosis a simple wake sleep classification is not sufficient and
requires at lest a three stage classification with Wake,NREM, and REM sleep.

7.1 Limitations

The Section discusses the limitations of the work. In Section 7.1.1 the limitations of the data set
are addressed. In Section 7.1.2 the limitations and possible solution concerning the feature quality
are discussed. Finally Section 7.1.3 discusses the limitations of the models used in this work.

7.1.1 Dataset

One limitation regarding the dataset is its relatively small size, which is generally bad for generali-
sation and model performance. A second limitation is the lack of expert labels, this is a important
limitation of this work influencing both the training and testing results, as the labels highly impacts
the data quality. And bias the model when features and labels are contradicting. This is shown in
the high variance and poor MCC score over the models as well the poor detection of the minority
classes.

The variation in validation performance and test results depending on data splits further
emphasizes the need for expert labels. The automatic sleep labelling by the SOMNO eco system is
unreliable. Expert labels would not only improve data quality but also increase the dataset size by
including currently excluded participants.

7.1.2 Features

The overall quality of the features can be improved in several ways. First, by improving the
predicted heartbeats with an advanced combination of the LSTM probability output. As shown in
Fig. 5.4, the R-peak predictions of the individual radar nodes are not fully aligned despite being
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synchronised with each other. A simple summation leads to wider and lower peak values, which
requires a lower threshold for the height and thus increases the chance of detecting false peaks.

Although the presented threshold level of 0.24 for the heartbeats prediction gives a good
results prediction of the heartbeats as shown in Section 6.1, it could be beneficial to use a dynamic
threshold for height and distance leading to a higher F1 score and precision as the heart rate is
variable during the night.

7.1.3 Model

As the training pipelines for the CNN’s and provided LSTM and TCN algorithm are containing
differences, the results are not completely comparable. The main difference is that for the during
the training and validation of the models. While during CNN training a 3 fold cross validation is
performed the LSTM and TCN only used a simple 80/20 split of the training data into train and
validation set, resulting in different data splits. This further hints at the bad quality of the labels
and data as the LSTM and TCN had a bigger training set (18/5), to the CNNs which trained on a
(15/8) split on the cross fold validation.

For the CNN the application of a dense CNN might archive better results as the four block
CNN revealed to have a better performance.

The missing expert labels are a concern and the results are difficult to interpret and poorly
applicable to reveal trends in the underlying data as we may see the sleep stage in the features
but when the label is the same as when the feature is not present the models will naturally learn
nothing, represented in the poor MCC sores. For the test results it seem not to not help that some
splits containing data with good label quality during the training, seen in the high variance during
hyperparameter search. This hints that we should perform an sophisticated class balancing than
the use of weighted loss functions or improve the class weights, to tackle the class imbalances in
the classes data.
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Conclusion and Outlook

In conclusion of this work, this work successfully extracted the heart rate from a sleeping person
using a 61GHz CW radar system. We achieved a high F1 score of 0.803 with for the heart rate
extraction. However, when evaluating the HRV feature for different window sizes (60s, 180s and
360) our results were not comparable to accuracies obtainable from a PSG setup. In this work we
tested four DL networks: a two block 1D-CNN, a four block 1D-CNN, a LSTM, and a TCN. The
four block 1D CNN emerged as the the best performing network on average, with MCC score of
0, 173 across all the window sizes for a simple Wake/sleep classification. Notably, the highest
MCC score of 0.203 ± 0.073 was achieved by the two block CNN model, with an F1 score of
0.732± 0.100, and a balanced accuracy of 0.631± 0.061 for the binary classification. While the
LSTM and TCN both performed worse than the CNN’s, they still outperformed random guessing
as indicated by their on average MCC scores higher than zero.

These findings demonstrate the general possibility to predict the sleep stages using HRV
features. However, they also indicate that the heart rate alone is insufficient to reliable predict
the sleep stages. To enhance the model predictions, additional features should be combined to
the HRV, ether the respiratory wave or body movements as they can reduce the ambiguity of the
features. This need for additional data is further emphasized by the increased difficulty in detecting
sleep stages with finer class granularity.

Moreover the high variance during the training and testing reveals a high imbalance in the
dataset, which needs to be addressed. Oversampling, is a promising method to mitigate this issue
and the small size of our dataset. The overall lower performance of the LSTM and TCN algorithms
requires a confirmation trough cross validation.

Further an interesting alternative route to explore would be the direct use of raw radar signals
bypassing the feature extraction process with the bi-directional LSTM used during heartbeat
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extraction. This however, would greatly impact the explainability of the predicted sleep stages as
the understandability of the used features in such a network is not given. Finally, to produce robust
results that are usable in real world scenarios, an expert labelling of our dataset is required. This
would also affect the current findings, as an inspection revealed the ambiguity of the automated
labels produced by the PSG system.

In general, the results can be improved in a few ways. The first way would be to train the
models on expert labels, and to address the class imbalance or increasing the dataset. A second
way would incorporate the additional biosignals that can be extracted from the radar signals such
as the respiratory signals and body movements. Further the HRV feature quality could be improved
ether by an improved LSTM algorithm to extract the heartbeats or an advanced summary of the
LSTM probability output in order to improve heartbeat detection.
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FragebogenFragebogen

11   PSQI   PSQI

During the past month, what time have you usually gone to bed at night?

Please enter the time using the 24-hour system (e.g. "22.00").

During the past month, how long (in minutes) has it usually taken you to fall asleep each night?

minutes

During the past month, what time have you usually gotten up in the morning?

Please enter the time using the 24-hour system (e.g. 08.00).

During the past month, how many hours of actual sleep did you get at night? (This may be different than the

number of hours you spent in bed.)

Please enter the hours of sleep.

hours

During the past month, how often have you had trouble sleeping because you cannot get to sleep within 30

minutes?

During the past month, how often have you had trouble sleeping because you wake up in the middle of the

night or early morning?

During the past month, how often have you had trouble sleeping because you have to get up to use the

bathroom?

During the past month, how often have you had trouble sleeping because you cannot breathe comfortably?

During the past month, how often have you had trouble sleeping because you cough or snore loudly?

During the past month, how often have you had trouble sleeping because you feel too cold?

During the past month, how often have you had trouble sleeping because you feel too hot?

During the past month, how often have you had trouble sleeping because you had bad dreams?

During the past month, how often have you had trouble sleeping because you have pain?
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22   STOP BANG   STOP BANG

Other reason(s), please describe:

How often during the past month have you had trouble sleeping because of this?

During the past month, how would you rate your sleep quality overall?

During the past month, how often have you taken medicine to help you sleep (prescribed or "over the

counter")?

During the past month, how often have you had trouble staying awake while driving, eating meals, or

engaging in social activity?

During the past month, how much of a problem has it been for you to keep up enough enthusiasm to get

things done?

Do you have a bed partner or room mate?

If you have a room mate or bed partner, ask him/her how often in the past month you have had loud

snoring:

If you have a room mate or bed partner, ask him/her how often in the past month you have had long pauses

between breaths while asleep :

If you have a room mate or bed partner, ask him/her how often in the past month you have had legs

twitching or jerking while you sleep:

If you have a room mate or bed partner, ask him/her how often in the past month you have had episodes of

disorientation or confusion during sleep:

Other restlessness while you sleep; please describe:

How often in the past month have you experienced this other restlessness you described?

Do you snore loudly?

Louder than talking or loud enough to be heard through closed doors

Yes

No
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33   RBD Screening Questionnaire   RBD Screening Questionnaire

Do you often feel tired, fatigued, or sleepy during the daytime?

Yes

No

Has anyone observed you stop breathing during sleep?

Yes

No

Do you have (or are you being treated for) high blood pressure?

Yes

No

BMI

<=35

>35

Age

<=50

>50

Gender

Female

Male

Other

I sometimes have very vivid dreams.

Yes

No

My dreams frequently have an aggressive or action-packed content.

Yes

No
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The dream contents mostly match my nocturnal behaviour.

Yes

No

It thereby happened that I (almost) hurt my bed partner or myself.

Yes

No

I have or had the following phenomena during my dreams:

speaking, shouting, swearing, laughing loudly

Yes

No

I have or had the following phenomena during my dreams:

sudden limb movements, “fights”

Yes

No

I have or had the following phenomena during my dreams:

gestures, complex movements, that are useless during sleep, e.g., to wave, to salute, to frighten mosquitoes,

falls off the bed

Yes

No

I have or had the following phenomena during my dreams:

things that fell down around the bed, e.g., bedside lamp, book, glasses

Yes

No

It happens that my movements awake me.

Yes

No

After awakening, I mostly remember the content of my dreams well.

Yes

No
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44   SF-12 Health Survey   SF-12 Health Survey

My sleep is frequently disturbed.

Yes

No

I have/had a disease of the nervous system (e.g., stroke, head trauma, parkinsonism, RLS, narcolepsy,

depression, epilepsy, inflammatory disease of the brain)

Yes

No

If yes, which?

In general, would you say your health is:

Excellent

Very good

Good

Fair

Poor

The following questions are about activities you might do during a typical day. Does your

health now limit you in these activities? If so, how much?

Moderate activities such as moving a table, pushing a vacuum cleaner, bowling, or playing golf.

YES, limited a lot

YES, limited a little

NO, not limited at all

Climbing several flights of stairs.

YES, limited a lot

YES, limited a little

NO, not limited at all
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During the past 4 weeks, have you had any of the following problems with your work or

other regular daily activities as a result of your physical health?

Accomplished less than you would like.

Yes

No

Were limited in the kind of work or other activities.

Yes

No

During the past 4 weeks, have you had any of the following problems with your work or

other regular daily activities as a result of any emotional problems (such as feeling depressed

or anxious)?

Accomplished less than you would like.

Yes

No

Did work or activities less carefully than usual.

Yes

No

During the past 4 weeks, how much did pain interfere with your normal work (including work outside the

home and housework)?

Not at all

A little bit

Moderately

Quite a bit

Extremely

These questions are about how you have been feeling during the past 4 weeks. For each

question, please give the one answer that comes closest to the way you have been feeling.

How much of the time during the past 4 weeks…
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55   Endseite   Endseite

Have you felt calm & peaceful?

All of the time

Most of the time

A good bit of the time

Some of the time

A little of the time

None of the time

Did you have a lot of energy?

All of the time

Most of the time

A good bit of the time

Some of the time

A little of the time

None of the time

Have you felt down-hearted and blue?

All of the time

Most of the time

A good bit of the time

Some of the time

A little of the time

None of the time

During the past 4 weeks, how much of the time has your physical health or emotional problems interfered

with your social activities (like visiting friends, relatives, etc.)?

All of the time

Most of the time

A good bit of the time

Some of the time

A little of the time

None of the time
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Appendix B

Detailed HRV Features

B.1 Window size 60s

Table B.1: Feature table win size 60s

Ind HRV
MeanNN

HRV
SDNN

HRV
RMSSD

HRV SDSD HRV
CVNN

HRV CVSD

0 989.166345 634.480778 879.417715 887.232551 0.641430 0.889049
1 989.166345 634.480778 879.417715 887.232551 0.64143 0.889049
2 896.930909 482.364586 601.005864 605.631623 0.537795 0.670069
3 1202.654609 1278.319662 1549.321129 1566.701099 1.062915 1.288251
4 983.523019 289.664014 412.317625 416.186297 0.294517 0.419225

HRV Medi-
anNN

HRV
MadNN

HRV
MCVNN

HRV
IQRNN

HRV
SDRMSSD

HRV
Prc20NN

0 804.352 165.102336 0.205261 223.104 0.721478 673.3824
1 804.352 165.102336 0.205261 223.104 0.721478 673.3824
2 795.136 130.563686 0.164203 171.008 0.802595 695.8080
3 824.320 162.825062 0.197527 268.800 0.825084 719.3600
4 911.360 46.304563 0.050808 52.736 0.702526 883.7120

HRV
Prc80NN

HRV
pNN50

HRV
pNN20

HRV
MinNN

HRV
MaxNN

HRV HTI

0 1026.9696 65.517241 75.862069 363.008 3075.584 19.333333
1 1026.9696 65.517241 75.862069 363.008 3075.584 19.333333
2 939.0080 57.575758 74.242424 301.568 3234.816 13.200000
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3 1222.6560 65.217391 84.782609 301.568 8587.776 11.500000
4 967.6800 52.830189 69.811321 617.472 2535.424 8.833333

HRV TINN HRV LF HRV HF HRV VHF HRV TP HRV LFHF
0 351.5625 0.023053 0.047818 0.003592 0.074462 0.482099
1 351.5625 0.023053 0.047818 0.003592 0.074462 0.482099
2 414.0625 0.060723 0.041255 0.002085 0.104063 1.471887
3 460.9375 0.011502 0.001065 0.000026 0.012594 10.798633
4 289.0625 0.050871 0.070591 0.003552 0.125014 0.720647

HRV LFn HRV HFn HRV LnHF HRV SD1 HRV SD2 HRV
SD1SD2

0 0.309591 0.642174 -3.040363 627.368154 594.283492 1.055672
1 0.309591 0.642174 -3.040363 627.368154 594.283492 1.055672
2 0.583519 0.396443 -3.187978 428.246227 534.890503 0.800624
3 0.913333 0.084579 -6.844611 1107.824971 1451.197948 0.763387
4 0.406923 0.564663 -2.650859 294.288153 281.611549 1.045015

HRV S HRV CSI HRV CVI HRV CSI
Modified

HRV PIP HRV IALS

0 1.171294e+06 0.947264 6.775636 2251.774288 0.637931 0.666667
1 1.171294e+06 0.947264 6.775636 2251.774288 0.637931 0.666667
2 7.196284e+05 1.249026 6.564078 2672.367738 0.545455 0.569231
3 5.050655e+06 1.309952 7.410318 7604.000776 0.478261 0.511111
4 2.603593e+05 0.956925 6.122543 1077.923986 0.566038 0.596154

HRV PSS HRV PAS HRV GI HRV SI HRV AI HRV PI
0 0.894737 0.214286 49.808397 49.301489 50.031079 52.631579
1 0.894737 0.214286 49.808397 49.301489 50.031079 52.631579
2 0.810811 0.200000 51.144476 52.204785 50.105361 56.923077
3 0.739130 0.181818 48.558699 48.300378 53.352664 60.000000
4 0.774194 0.333333 47.215295 46.864692 47.985074 44.230769

HRV C1d HRV C1a HRV SD1d HRV SD1a HRV C2d HRV C2a
0 0.509365 0.490635 447.752450 439.443558 0.472536 0.527464
1 0.509365 0.490635 447.752450 439.443558 0.472536 0.527464
2 20.484050 0.515950 297.972172 307.633787 0.571788 0.428212
3 0.607127 0.392873 863.269338 694.435928 0.359507 0.640493
4 0.501493 0.498507 208.480805 207.859061 0.477108 0.522892
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HRV SD2d HRV SD2a HRV Cd HRV Ca HRV
SDNNd

HRV
SDNNa

0 408.518049 431.608471 0.491947 0.508053 428.584445 435.543634
1 408.518049 431.608471 0.491947 0.508053 428.584445 435.543634
2 404.466359 350.021163 0.537513 0.462487 355.232636 329.509758
3 870.122279 1161.405487 0.450688 0.549312 866.702581 956.844805
4 194.517556 203.636895 0.489842 0.510158 201.620095 205.758808

HRV DFA al-
pha1

HRV
MFDFA
alpha1
Width

HRV
MFDFA
alpha1 Peak

HRV
MFDFA
alpha1
Mean

HRV
MFDFA
alpha1 Max

HRV
MFDFA
alpha1
Delta

0 0.682497 2.445954 1.381829 1.537270 0.002919 -0.160676
1 0.682497 2.445954 1.381829 1.537270 0.002919 -0.160676
2 0.833684 2.301850 1.626745 1.629737 0.228043 -0.010320
3 0.993351 2.435734 1.664672 1.730758 -0.170763 -0.020711
4 0.775761 1.237567 1.025850 1.003147 -0.222317 -0.349546

HRV
MFDFA
alpha1
Asymmetry

HRV
MFDFA
alpha1
Fluctuation

HRV
MFDFA
alpha1
Increment

HRV ApEn HRV Sam-
pEn

HRV
ShanEn

0 -0.436450 0.011055 0.739575 0.567606 0.864997 5.857981
1 -0.436450 0.011055 0.739575 0.567606 0.864997 5.857981
2 -0.498700 0.012470 0.734613 0.622912 0.668883 6.044394
3 -0.472868 0.007527 0.603164 0.555456 0.513262 5.523562
4 -0.518345 0.001024 0.086600 0.629586 0.771863 5.539241

HRV
FuzzyEn

HRV MSEn HRV
CMSEn

HRV RCM-
SEn

HRV CD HRV HFD

0 0.836982 0.630561 0.707253 0.761050 1.101672 1.999975
1 0.836982 0.630561 0.707253 0.761050 1.101672 1.999975
2 0.861208 0.751624 0.921159 0.869954 1.037993 1.909911
3 0.584853 0.214339 0.303849 0.312020 0.658206 2.008628
4 0.680505 0.350746 0.594368 0.563003 0.829114 1.997467

HRV KFD HRV LZC
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0 2.937889 1.009997
1 2.937889 1.009997
2 1.993871 0.915817
3 1.639163 1.080697
4 2.394583 0.972666



Appendix C

Score Tables

C.1 Individual scores Heartbeat height threshold
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Table C.1: Detailed results of all tested height thresholds,Tt: Total True ECG Beats, Tpb: Total
predicted beats, Tp: True positive peaks, Fn: False negative beats, Fp: False positive beats, F1
score: 2Tp/(2Tp+ Fp+ Fn), Precision: Tp/(Tp+ Fp), Recall: Tp/(Tp+ Fn)

Vp, Height threshold Tt Tpb Tp Fn Fp f1 Precision Recall
02, 0.24 23331 22835 17791 5044 5540 0.770740 0.779111 0.762548
02, 0.26 23331 22064 17346 4718 5985 0.764225 0.786168 0.743474
02, 0.28 23331 21263 16820 4443 6511 0.754362 0.791045 0.720929
02, 0.30 23331 20424 16263 4161 7068 0.743366 0.796269 0.697055
02, 0.32 23331 19507 15606 3901 7725 0.728605 0.800021 0.668895
06, 0.24 27335 23366 19628 3738 7707 0.774265 0.840024 0.718054
06, 0.26 27335 23108 19450 3658 7885 0.771167 0.841700 0.711542
06, 0.28 27335 22840 19250 3590 8085 0.767314 0.842820 0.704225
06, 0.30 27335 22551 19020 3531 8315 0.762539 0.843422 0.695811
06, 0.32 27335 22243 18794 3449 8541 0.758159 0.844940 0.687543
10, 0.24 29119 28082 22638 5444 6481 0.791525 0.806139 0.777431
10, 0.26 29119 27166 22083 5083 7036 0.784685 0.812891 0.758371
10, 0.28 29119 26126 21401 4725 7718 0.774767 0.819146 0.734950
10, 0.30 29119 25109 20690 4419 8429 0.763074 0.824007 0.710533
10, 0.32 29119 23903 19796 4107 9323 0.746709 0.828181 0.679831
28, 0.24 27012 30394 21683 8711 5329 0.755426 0.713397 0.802717
28, 0.26 27012 29697 21337 8360 5675 0.752508 0.718490 0.789908
28, 0.28 27012 28980 20935 8045 6077 0.747785 0.722395 0.775026
28, 0.30 27012 28175 20421 7754 6591 0.740066 0.724791 0.755997
28, 0.32 27012 27262 19788 7474 7224 0.729189 0.725845 0.732563
42, 0.24 39378 37225 34058 3167 5320 0.889208 0.914923 0.864899
42, 0.26 39378 35869 33133 2736 6245 0.880646 0.923722 0.841409
42, 0.28 39378 34240 31906 2334 7472 0.866799 0.931834 0.810249
42, 0.30 39378 32330 30327 2003 9051 0.845847 0.938045 0.770151
42, 0.32 39378 30193 28464 1729 10914 0.818272 0.942735 0.722840
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Appendix D

Acronyms

DNN deep neural network

DL deep learning

ML machine learning

WHO World Health Organization

REM rapid eye movement

NREM non rapid eye movement

EEG electroencephalography

PSG polysomnography

EMG electromyography

EOG electrooculography

ECG electrocardiography

SW slow wave

PD Parkinson’s disease

CNN convolutional neural network

HRV heart rate variability
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MLP multilayer perceptron,

SVM support vector machine,

TCN temporal convolutional network

LSTM long short-term memory.

CW continuous wave

ITU International Telecommunication Union

ISM industrial, scientific and medical

RBD REM sleep behaviour disorder

LBD Lewy body dementia

MSA multiple system atrophy

iRBD isolated RBD

RF random forest

BN batch norm

FC fully connected

TCNN time convolutional neural network

ReLU rectified linear unit function

HRV heart rate variability

IMU inertia measurement unit

Std standard deviation
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