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Übersicht

Detaillierte Leistungsanalysen werden immer wichtiger in vielen Sportarten, insbesondere im
Fußball. Derzeit werden dafür vor allem sehr teure Geräte wie GPS-Westen oder Hochgeschwindig-
keitskameras eingesetzt. Diese Technologien sind jedoch für Amateurspieler oft zu teuer. Es stellt
sich daher die Frage, wie auch Sportler mit einem geringeren 昀椀nanziellen Budget vergleichbare
Einblicke in ihre Leistungsdaten erhalten können [Cup22]. Die vorliegende Arbeit befasst sich mit
dieser Frage und nutzt einen auf Inertialsensorik basierenden Lösungsansatz, bei dem jeweils ein
Inertial Measurement Unit (IMU) in die Sohle der Fußballschuhe integriert wird.
Bestehende Modelle können derzeit meist nur allgemeine Aktivitäten wie Pässe, Schüsse oder
Rennen unterscheiden und sind gleichzeitig nur eingeschränkt auf reale Spielsituationen anwendbar
[Kon22; Alo18]. Daher besteht ein wachsendes Interesse an spezi昀椀scheren Leistungsanalysen,
die auch außerhalb von Laborbedingungen funktionieren. Es wurde gezeigt, dass traditionelle
Machine Learning (ML) Modelle in der Lage sind zwischen diesen allgemeinen Aktivitäten zu
unterscheiden [Kon22; Alo18]. Ansätze aus dem Bereich Deep Learning (DL) haben im Vergleich
jedoch deutlich bessere Ergebnisse erzielt [Sto21; Cup22]. Das Ziel dieser Studie ist es daher,
einen DL-Ansatz zu entwickeln, der auch in realistischen Spielsituationen in der Lage ist, fußball-
spezi昀椀sche Aktivitäten zu klassi昀椀zieren.

Es werden Daten von über 800 Spielern verwendet. Dabei sollen Aktivitäten wie Dribbling, die Art
von Pässen und die Art von Schüssen klassi昀椀ziert werden. Zudem wird erfasst, ob diese Aktivitäten
mit dem linken oder rechten Fuß ausgeführt werden. Die Aktivitäten werden mithilfe eines Algo-
rithmus zur Spitzenerkennung extrahiert. Ein kombinierter Ansatz aus Random Undersampling
und Adaptive Synthetic Sampling Approach (ADASYN) wird eingesetzt, um den stark unausge-
wogenen Datensatz zu balancieren. Zwei DL-Modelle, ein Convolutional Neural Network (CNN)
und ein CNN-Long Short-Term Memory (LSTM), werden implementiert und optimiert, mit beson-
derem Fokus auf die Leistungsbewertung unter Labor- und realen Spielbedingungen.
Die Ergebnisse zeigen, dass das CNN mit einem gewichteten F1-Score von 92,54 % für die
genauere Aktivitätserkennung und 97,53 % für die Unterscheidung, mit welchem Fuß die Aktivität
ausgeführt wird, die beste Leistung erzielt.

Aufbauend auf diesen Ergebnissen bietet diese Arbeit wertvolle Einblicke in die
detailliertere Spieleranalyse.
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Abstract

Detailed performance analysis is becoming increasingly important in many sports, especially in
soccer. Currently, very expensive devices such as GPS vests or high-speed cameras are mainly
used for this purpose. However, these technologies are often too expensive for amateur players.
Therefore, the question arises of how athletes with a lower 昀椀nancial budget can also gain compara-
ble insights into their performance data [Cup22]. The present thesis deals with this question and
uses a solution based on inertial sensor technology, in which an Inertial Measurement Unit (IMU)
is integrated into the sole of each soccer shoe.
Existing models can currently only di昀昀erentiate between general activities such as passing, shoot-
ing or running and at the same time can only partially be applied to real game situations [Kon22;
Alo18]. Therefore, there is a growing interest in more speci昀椀c performance analyses that work
outside of laboratory conditions. It has been shown that traditional Machine Learning (ML)
models can distinguish between these general activities [Kon22; Alo18]. However, approaches
from the 昀椀eld of Deep Learning (DL) have achieved better results in comparison [Sto21; Cup22].
Therefore, this study aims to develop a DL approach that can classify soccer-speci昀椀c activities
even in realistic game situations.

Data from over 800 players is used. The aim is to classify activities such as dribbling, the type of
pass and the type of shots. In addition, it is determined whether these activities are performed with
the left or right foot. The activities are extracted using a peak detection algorithm. A combined ap-
proach of random undersampling and Adaptive Synthetic Sampling Approach (ADASYN) is used
to balance the highly imbalanced data set. Two DL models, a Convolutional Neural Network (CNN)
and a CNN-Long Short-Term Memory (LSTM), have been implemented and optimized, with a
particular focus on performance evaluation under laboratory and real game conditions.
The results show that the CNN achieves the best performance with a weighted F1 score of 92.54 %
for activity recognition and 97.53 % for distinguishing by which foot the activity is performed.

Building on these results, this paper provides valuable insights into more detailed player analysis.
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Chapter 1

Introduction

In recent years, data analysis has become a pillar of modern team-based sports, fundamentally
transforming how teams approach both preparation and in-game strategies [Sar21; Lee22; Jha22;
Mic23; Nic24]. This development is particularly evident in soccer, where performance analysis has
become essential for evaluating players and matches. In professional soccer, advanced tools such as
high-speed cameras, GPS vests, and video analytics systems are used to monitor key performance
indicators such as player positions, distance covered, speed, power, intensity, and heart rate. These
insights are crucial for optimizing performance, player health for injury prevention, and re昀椀ning
tactical approaches for future matches [Cup22; Kon22; Jha22]. For example, during the 2010
FIFA World Cup, it was identi昀椀ed that England’s opponents were increasingly utilizing long
passes, which exposed weaknesses in the English defense. The German team e昀昀ectively used this
information in their round of sixteen match against England, where goalkeeper Manuel Neuer
assisted a goal by delivering a long pass over the English defense to Miroslav Klose, who scored
the opening goal [Per13].
Given the considerable 昀椀nancial resources available in professional soccer, professional clubs can
a昀昀ord to invest in this expensive equipment [Kon22]. However, for amateur athletes with limited
budgets, the question arises: How can they bene昀椀t from similar insights without the need for big
investments into expensive technology?

A common method for performance and activity analysis is the use of data from an
Inertial Measurement Unit (IMU). IMUs are ideal for this purpose due to their small size,
low cost, and high accuracy [Cup22]. These sensors allow an easy-to-use, unobtrusive data
acquisition for Human Activity Recognition (HAR) [Man23]. HAR means the automatic recog-
nition of physical human activities [Sch19]. It has been shown that IMU data recorded during
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a soccer drill can be used to identify di昀昀erent activities. When the sensors are placed on a
player’s foot or hand, it is possible to distinguish between jogging, sprinting, passing, shooting,
and jumping [Cup22; Kon22; Sto21; Hos17].

The intersection of HAR and soccer performance analysis opens up new opportunities to better
understand player behaviour on the 昀椀eld. Beyond general activity classi昀椀cation, HAR techniques
can provide insights into more di昀昀erentiated actions, such as the type of pass or whether a player
is dribbling while jogging [Cup22].
Traditional Machine Learning (ML) methods have achieved considerable accuracy in classifying
these activities, with reported accuracies of up to 87 % [Alo18]. In contrast, more advanced Deep
Learning (DL) approaches have shown even greater potential, achieving accuracies of up to 98.3 %
[Cup22]. However, current methods often lack the granularity required for detailed individual
assessment, and many approaches still rely on shallow classi昀椀cation structures, making the devel-
opment process manual, subjective and time-consuming [Cup22]. DL has been used to address the
issues associated with traditional ML, improving accuracy and overcoming some of its limitations.
Nevertheless, despite achieving notable results, DL approaches typically focus on general activi-
ties and make limited use of real game data. This restricts their overall applicability [Sch19; Sto21].

Despite these advancements, a gap remains in the combination of using DL models to classify more
speci昀椀c metrics, incorporating real game data where the complexity and variability of movements
are higher. Therefore, the aim of this work is to develop a DL approach capable of classifying
more speci昀椀c metrics such as dribbling, type of pass, type of shot, and automatic left and right
foot recognition using two IMU sensors embedded in the sole of each soccer shoe.
The DL model seeks to accurately classify these metrics, even in game-like situations, thus provid-
ing detailed insights into player performance and activities.



Chapter 2

Related Work

2.1 Overview of IMU-based Activity Recognition

In recent years, IMU data has emerged as a powerful tool for HAR, owing to its versatility and
practical applications. Integrating IMUs into various devices has expanded their utility. For
instance, IMUs are now commonly found in smartwatches and sports equipment, such as the balls
used in the 2024 European Championship in Germany [Mic23; Kon22; adi23]. Their application
extends beyond these devices to textiles like clothing and shoes, or even as standalone sensors
attached to speci昀椀c body regions [Kru24; Sch19; Lar23]. This widespread integration highlights
the 昀氀exibility of IMUs, making them increasingly popular for recognizing a broad spectrum of
activities. From everyday tasks such as sitting, lying down, walking, cycling, and dishwashing
to more complex sport-speci昀椀c movements, IMU-based HAR provides valuable insights [Sch19;
Hsu18]. Consequently, this technology has found applications across numerous sports, including
rugby, tennis, boxing, swimming, and soccer [Nic24; Mic23; Jay24; Che23; Cup22].

Given the broad applicability of IMU data, both traditional ML methods and DL techniques have
been extensively employed for activity classi昀椀cation. Existing literature has predominantly focused
on distinguishing between a wide range of soccer activities that vary in movement patterns and
intensity, such as shooting, passing, heading, dribbling, jogging, sprinting, changing direction, and
jumping [Alo18; Rei21; Sch19; Kon22; Hal23; Lar23; Cup22; Sto21; Hos17]. As a consequence,
classi昀椀cation models have often achieved good to excellent accuracy in these scenarios [Cup22;
Alo18]. However, they primarily focus on more predictable and repetitive soccer activities, often
recorded in controlled laboratory settings. In contrast, real game scenarios involve fast, irregular,
and non-repetitive movements, such as ball contacts under opponent pressure. Furthermore, players
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execute these movements di昀昀erently based on whether the ball contact is with their dominant or
weaker foot, which adds another layer of complexity [Alo18].

Given this complexity, the accurate classi昀椀cation of soccer-speci昀椀c activities based on IMU data
requires re昀椀ned approaches. Therefore the following section provides a comprehensive overview
of the current literature on soccer-speci昀椀c activity recognition using IMU signals, highlighting the
various traditional ML and DL approaches that have been explored.

2.2 Traditional Machine Learning Approaches

Alobaid and colleagues conducted a study using a smartphone’s accelerometer to classify activities
such as sprinting, passing, heading, shooting, and dribbling. The study achieved an accuracy of
87 % using a Support Vector Machine (SVM) when all features were considered simultaneously.
Data were collected from 16 players aged 18 to 35, who performed only the speci昀椀c activities
to be classi昀椀ed. The smartphone, equipped with an integrated accelerometer, was secured in a
belt-mounted phone pouch for data collection [Alo18]. However, the study did not evaluate the
practicality or feasibility of this approach in real-world settings, such as during training sessions
or actual games, leaving it unclear whether wearing a sensor in the abdominal area and using a
smartphone is the most e昀昀ective method for data collection in such environments [Kon22].

While Alobaid and colleagues focused on classifying speci昀椀c activities using a smartphone-based
approach, Reilley and colleagues introduced a new metric, called Change of Direction (COD),
aimed at providing a more comprehensive analysis of player dynamics during a game. This metric
extends traditional physiological measurements like sprinting and jumping by focusing on how
often and when a player changes direction. Such insights can o昀昀er a deeper understanding of player
load and support the development of personalized training and recovery strategies for individual
athletes. The study utilized data from a sensor that provides both GPS and IMU data, from which
a new variable, the GPS-COD angle, was derived. The sensor was placed in specially designed
vest pockets located on the players’ backs between their shoulder blades. Data were collected from
23 Premier League academy soccer players over the course of 10 competitive matches. Using this
data, the researchers trained a random forest classi昀椀er to automatically detect CODs greater than
45 degrees. The model achieved an accuracy of 84 % [Rei21].
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Building on the study of general player dynamics and loading, Schuldhaus concentrated on a
more detailed soccer-speci昀椀c analysis. His doctoral thesis focused on distinguishing between two
speci昀椀c soccer actions, the full-step kick and the side-foot kick while identifying the event leg used
in each action. To collect data, Schuldhaus embedded an IMU sensor in the sole of an Adidas F50
adizero shoe. 11 male participants, aged between 20 and 30 years, were recruited to perform 14
prede昀椀ned exercises. The data gathered from these exercises was then used to train a ML model.
In addition to this controlled data, real match data was collected from 17 other male players during
an 11-a-side soccer match, with only one of these players having participated in the initial data
collection phase.
To distinguish between the soccer-speci昀椀c actions, Schuldhaus developed two algorithms: one
based on a hierarchical architecture and the other focused on analyzing the phases of the kicking
action. A k-Nearest Neighbours (k-NNs) algorithm was employed for the classi昀椀cation of the event
leg, achieving an accuracy of over 99 % in both approaches. Using both Naive Bayes (NB) and
SVM classi昀椀ers, an accuracy exceeding 94 % was achieved in distinguishing between full-instep
and sidefoot kicks, regardless of the classi昀椀cation approach applied.
The hierarchical model was further tested on real match data, representing actual game scenarios.
Since these real match conditions were not included during the training phase, the model’s accuracy
in detecting key events from the sensor data decreased by 5 %. The decline in accuracy and the
rise in false positive rates suggest that the variability of real game conditions introduced factors not
covered during training. As a result, Schuldhaus recommends integrating real match data into the
training process of future systems to improve their overall performance and reliability in authentic
match conditions [Sch19].

While Schuldhaus’ work provided deep insights into speci昀椀c soccer actions and their recognition
under real game conditions, Kondo and colleagues’ paper shifted the focus to the evaluation of
sensor placement and its impact on the classi昀椀cation of di昀昀erent soccer activities. They include
metrics such as shooting, passing, heading, running, dribbling, and performing kick tricks. Their
research compared three di昀昀erent sensor placements, ultimately determining that positioning the
sensor inside the ankle yielded the most accurate results. By employing an ensemble bagged
tree classi昀椀cation method, the researchers achieved an accuracy rate of 78.7 % when classifying
all six metrics simultaneously. The data were collected from 10 right-footed players aged 20 to
23 years, although data from only seven players were usable for analysis. Importantly, the data
were recorded under controlled experimental conditions with no real game data being used in the
study [Kon22].
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The presented papers demonstrate how well traditional ML algorithms perform across various
individual metrics. It becomes evident that a di昀昀erentiated recognition of activities is generally
feasible. However, these papers also highlight the limitations of traditional ML, as the classi昀椀ers
tend to perform less e昀昀ectively when distinguishing between multiple metrics simultaneously.
Additionally, most models were trained primarily on laboratory data, which further underscores
these limitations.

2.3 Deep Learning Approaches

In contrast to the previously discussed approaches, Stoeve and colleagues employed a DL method-
ology to distinguish between shots and passes in soccer using data collected from an IMU sensor.
This sensor was also embedded in the sole of an Adidas F50 adizero shoe, just as in Schuldhaus’
doctoral research. The study utilized a comprehensive dataset collected from 836 players, cate-
gorized according to German-de昀椀ned age groups, ranging from U12 to adult athletes. The data
collection process was extensive, incorporating both prede昀椀ned exercises conducted in controlled
laboratory settings and real-world game scenarios, thus yielding a highly diverse dataset.
Three di昀昀erent types of neural networks were developed in the study and their performance was
then evaluated against a SVM classi昀椀er already established in another paper [Sch19]. The evalua-
tion process involved testing the classi昀椀ers progressively on data that transitioned through three
stages, each stage increasingly re昀氀ecting real-game conditions rather than controlled laboratory
environments. The results showed that the SVM was no longer able to reliably distinguish be-
tween the three classes. In contrast, the DL models performed consistently very well, with the
Convolutional Neural Networks (CNNs) achieving the highest e昀昀ectiveness, as evidenced by a
weighted F1 score of 93 % [Sto21].

Building on Stoeve and colleagues’ use of DL to classify soccer-speci昀椀c activities, Hossain took a
slightly di昀昀erent approach by placing the sensors on the wrist rather than in the shoe. With this
wrist-worn sensor setup, he wanted to distinguish between multiple metrics such as passing, shoot-
ing, running, standing and dribbling, extending Stoeve’s range of metrics. In this study, dribbling
was de昀椀ned as performing a speci昀椀c trick, either a cut-over or step-over move. A Restricted Boltz-
mann Machine (RBM) was utilized for classi昀椀cation, achieving an overall accuracy of 86.54 %
when all classes were classi昀椀ed simultaneously. Notably, high accuracy was observed for the
walking, running, and standing classes, while the lowest accuracy was recorded for dribbling events.
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Data collection was conducted using an IMU sensor attached to the player’s non-dominant wrist.
The study exclusively used acceleration data measured in the x, y, and z directions. The dataset was
gathered from six players, each participating in ten one-hour sessions of a 昀椀ve-a-side game [Hos17].

In contrast to Hossain’s wrist-based sensor approach, Larsen’s study employed a broader DL metho-
dology to classify various soccer actions, including passing, 昀椀rst touch, dribbling, positioning,
and head scanning. For this purpose, players were equipped with 17 IMU sensors, although only
seven of these sensors were used for the 昀椀nal analysis. The sensors were strategically positioned
on the head, sternum, right wrist, right calf, right foot, left calf, and left foot, re昀氀ecting common
sensor placements used by major player tracking companies in soccer.
The data utilized included 13 raw outputs from the sensors, which comprised accelerometer, gyro-
scope, and magnetometer readings (X, Y, Z) as well as quaternion outputs (W, X, Y, Z). From these
raw outputs, manual features were extracted to serve as inputs for the classi昀椀cation algorithms. The
classi昀椀cation process was divided into two distinct parts: the 昀椀rst part utilized Long Short-Term
Memory (LSTM) networks to di昀昀erentiate among passing, 昀椀rst touch, dribbling, and positioning,
while the second part employed a Deep Neural Network (DNN) to predict head scanning.
The LSTM model achieved an accuracy of 75 % for the 昀椀rst part, while the DNN model achieved
an accuracy of 78 % for head scanning. The analysis revealed that sensor placement on the right
calf provided the best results for the LSTM-based classi昀椀cation of soccer actions, whereas sensor
placement on the head was most e昀昀ective for the DNN-based head scanning classi昀椀cation. The
dataset consisted of recordings from 17 players aged 12 to 26, who participated in sessions within
a Goal Station Focus 360° environment, with no real match data being recorded [Lar23].

In another paper in the 昀椀eld of soccer activity classi昀椀cation, Cuperman made remarkable progress
by applying DL techniques by distinguishing between 昀椀ve speci昀椀c soccer activities: jogging,
sprinting, passing, shooting and jumping. By employing a combination of CNN and LSTM
networks, the model achieved an accuracy of up to 98.3 %.
Data for this study were collected from 11 players, each equipped with 昀椀ve IMU sensors placed on
the pelvis, right thigh, left thigh, right shank, and left shank. These sensors recorded accelerometer
and gyroscope data. The experiments were carefully designed to simulate conditions similar to
those in real soccer matches.
Before classifying speci昀椀c activities, the model 昀椀rst distinguished between high-activity and
low-activity periods. Classi昀椀cation into speci昀椀c activities was only performed during high-activity
periods, enhancing the model’s accuracy. Additionally, participants were required to walk or stand
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still brie昀氀y before and after each activity; these low-activity intervals were removed from the
dataset before training the model.
Cuperman explored various model architectures, including those based solely on CNNs, Recurrent
Neural Networks (RNNs), and combinations of both. The highest accuracy was achieved with a
model combining CNN and bidirectional LSTM networks [Cup22].

The research 昀椀ndings highlight that DL algorithms have substantially greater potential for HAR
than traditional methods. Unlike traditional algorithms, DL can e昀昀ectively utilize real game data
and achieve equal or even better accuracy. This advantage makes DL particularly well-suited for
handling complex and varied metrics. This alignment with our classi昀椀cation goals emphasizes the
bene昀椀ts of DL in delivering more accurate and promising results.



Chapter 3

Theoretical Background

Given the frequent references to ML and DL in the preceding section, it is essential to distinguish
between these fundamental concepts clearly. This section will provide a concise overview of the
hierarchical relationship between ML and DL, followed by an introduction to both approaches.
Special attention will be given to the DL models employed in this study, speci昀椀cally CNNs,
LSTMs, and their combination.

3.1 Hierarchical Relationship between ML and DL

Arti昀椀cial Intelligence (AI) encompasses a broad range of methods and techniques to enable ma-
chines to perform tasks that typically require human intelligence [Jan21].
Within this spectrum, ML plays a central role. ML focuses on developing algorithms and models
that allow computer systems to enhance their performance on speci昀椀c tasks through experience. In
this context, manually created features are often used as input for the classi昀椀ers to optimize model
performance [Jan21]. Traditional ML techniques include algorithms such as SVMs, Decision
Trees (DTs), and k-NNs, which are often categorized under ”Traditional” ML [Cha18]. These
algorithms excel in tasks such as credit scoring and natural language processing by identifying
patterns in high-dimensional data without the need for explicit programming [Jan21].
DL is a specialized subset of ML that focuses on Arti昀椀cial Neural Networks (ANNs). More
particularly, DNNs are used here, representing a speci昀椀c type of ANNs. Unlike traditional ML
algorithms, DL models operate with multiple processing layers that enable them to automatically
extract and learn complex features directly from raw data [Cha18]. This integrated approach
enhances performance in object and speech recognition [Cup22]. Despite these advanced ca-
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pabilities, DL models still encounter limitations, especially in areas requiring strong AI, such
as tasks involving literal understanding and intentionality [Jan21]. Figure 3.1 further illustrates
this relationship.

Figure 3.1: Visualization of the hierarchical relationship between ML and DL. Adapted
from [Jan21].

3.2 Traditional Machine Learning

Traditional ML algorithms are typically categorized into supervised and unsupervised learning.
Within supervised learning, tasks are further divided into classi昀椀cation and regression [Cha18].
Classi昀椀cation is concerned with predicting discrete class labels, or the category to which the
data belongs, such as gender or a type of fruit. In contrast, regression focuses on estimating
continuous outcomes by modelling how strong the relationship between input characteristics and
outcomes is, such as property prices or pro昀椀ts. Formally, regression can be represented as a
function y = f(X), where X represents the input variables and y the continuous output variable
[Pap20]. Common ML models for classi昀椀cation include SVM, Discriminant Analysis, and Naive
Bayes Classi昀椀ers. For regression, typical models include SVMs with regression capabilities, and
DTs. Unsupervised learning methods, such as K-means Clustering and Principal Component
Analysis, focus on discovering patterns and dimensionality reduction without labelled outcomes.
These approaches are used to tackle association and clustering problems [Cha18].
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Unfortunately, the e昀케cient processing of raw data often requires manual feature extraction, which
involves deriving features from the time and frequency domain. This process includes calculations
such as minimum, maximum, mean, standard deviation, variance, and percentiles. More advanced
methods such as the Fourier transform and the discrete cosine transform are usually used in the
frequency domain [Alo18]. However, these traditional machine learning methods have notable
limitations. The use of “hand-crafted features” can be both subjective and time-consuming, as each
feature must be carefully selected and adjusted [Cup22]. This can lead to a loss of information, as
features with higher information content are selected, while other features with lower information
content are not taken into account. In addition, a considerable level of understanding and expertise
is essential [Cha18].

Consequently, traditional ML methods are increasingly being outperformed by DL models, which
automatically learn and optimize features directly from raw data [Shi23; Sto21]. However, tradi-
tional ML models still o昀昀er advantages in terms of lower complexity and reduced data requirements
for training and development, as they do not require high-performance computing units or access
to large datasets. Additionally, they are more interpretable, allowing people to understand and
follow the decision-making process of the algorithms. Therefore, some HAR classi昀椀cations in
soccer continue to rely on these methods [Ahm23].

3.3 Deep Learning

DL involves learning hierarchical representations of data using architectures with multiple hidden
layers. In DL models, input data is processed through several layers, where each layer gradually
extracts more complex features and passes relevant information to the next layer. The initial layers
capture basic, low-level features, while the deeper layers combine these to form more complex
and abstract representations [Shi23].
Over time, numerous methods and model architectures have been developed within the 昀椀eld of
DL. These models can generally be categorized into two main types: discriminative (supervised)
and generative (unsupervised) approaches. Prominent examples of generative models include
Generative Adversarial Networks (GANs) and Autoencoders. In the realm of supervised learning,
CNNs and RNNs are widely recognized, with LSTMs networks playing a particularly important
role [Shi23]. In this work, CNNs and LSTMs will be used. Therefore, the following sections will
focus on these two structures and their functionalities.
Before delving into these advanced architectures, it is essential 昀椀rst to understand the structure
and functionality of an ANN that serves as a foundational architecture for deep learning [Shi23].
Therefore, the next section will overview a ANN’s basic components and operations.
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3.3.1 ANNs

ANNs are modelled after the functioning of biological neurons. The core components of ANNs
are arti昀椀cial neurons, which are linked by weighted connections [Zay18].
The operation of a single neuron is depicted in Figure 3.2. Essentially, a neuron receives one
or more input signals, each multiplied by an individual weight. These weighted inputs are then
summed within the neuron. The bias bk a昀昀ects the net input to the activation function, either
increasing or decreasing it depending on whether it is positive or negative. The output is then
generated through an activation function. This function primarily limits the amplitude range of
the output signal to a 昀椀nite value, while also introducing non-linearity [Zay18]. This non-linearity
enables the ANN to detect and model more complex patterns [Ahm23].

Figure 3.2: Basic principle of a arti昀椀cial neuron: The input x is multiplied by the weights w. The
weighted inputs and bias b are summed and then transformed through an activation function to
produce the 昀椀nal output y. Adapted from [Zay18].

Typical activation functions are the sigmoid function, which scales the output between 0 and 1
[Zay18], and the Recti昀椀ed Linear Unit (ReLU) function, returning the input if it is greater than
0, otherwise it outputs 0 [Che23]. The activation functions are shown in the Figures 3.3 and
3.4, respectively.
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σ(x) =
1

1 + e−x

Figure 3.3: Sigmoid activation function.
The values are scaled between 0 and 1.

ReLU(x) =

{

0 if x ≤ 0,

x if x > 0

Figure 3.4: ReLU activation function. Out-
puts the input value if greater than 0, other-
wise 0.

The output y on the neuron k can mathematically be described as

yk = ϕ

(

m
∑

i=1

xiwki + bk

)

where

• x1, x2, x3, . . . , xm are the input’s signals,

• wk1, wk2, wk3, . . . , wkm are the respective weights of neuron,

• bk is the bias, and

• ϕ is the activation function [Zay18].

These neurons are organized into layers: a typical ANN includes an input layer, a hidden layer,
and an output layer. The function of each neuron varies depending on the layer in which it is
located. For example, the neurons in the input layer transmit information to the hidden layers,
while the neurons in the hidden layers transmit information to the output layer [Han18]. The hidden
layers can extract higher-level features that are eventually passed to the output layer. The output



14 CHAPTER 3. THEORETICAL BACKGROUND

layer, which represents the number of possible outputs, is 昀椀nally responsible for categorization
tasks [Che21].

Nevertheless, a key question remains: How does the ANN learn? Training involves calibrating the
weights and biases, which are the connections between neurons [Zay18]. Low weights weaken
the signal, while high weights strengthen it. For example, a weight of 0 would result in no signal
being forwarded, thereby having no real impact on the network. The challenge is to determine the
appropriate weights to achieve the desired output [Han18].
To do this, an error function is used to calculate how much the 昀椀nal outputs of the network deviate
from their target values [Lil20]. A common choice is to use the categorical cross-entropy loss:

Loss(H(y, pi)) = −

N
∑

i=1

yi log(pi)

where pi is the predicted value, yi the corresponding real result and N the number of possible
output classes [Mos21]. In this context, backpropagation is a method for calculating the gradient
of this error with respect to each weight. This is done based on the current architecture of the
network. It starts with the output units by calculating the derivative of the error function. The
error signals then 昀氀ow backwards through the network, layer by layer. For each non-output layer,
the error signal at the neuron is calculated as a function of the error signals in the following layer
and the synaptic weights. In this way, the network can iteratively adjust each weight to minimize
the total error [Lil20].
While the backpropagation calculates the gradients of the error with respect to the weights, the
actual minimization of the error requires an optimization method. For this purpose, the gradient
descent method is usually used [Han18].

The gradient descent method is a technique for 昀椀nding the lowest point of a cost function, which
represents the di昀昀erence between the predicted value and the actual value. The machine begins
with any weight value and gradually adjusts it to minimize the cost, moving down the graph until
the cost reaches a minimum. This minimizes the error between the predicted value and the actual
output, without complicated mathematical calculations, thereby validating or adjusting the initial
weight [Han18]. This learning process of ANNs is illustrated in Figure 3.5.
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Figure 3.5: Schematic illustration of the gradient descent method. Initially, an arbitrary value for
the weight is selected. The weighting is then adjusted iteratively in order to converge towards the
minimum of the cost function successively. Adapted from [Han18].

3.3.2 CNNs

CNNs were originally developed for tasks in arti昀椀cial vision and image processing [Cup22]. How-
ever, they have also proven to be highly e昀昀ective in other domains such as object recognition,
speech recognition, and time-series tasks. Fundamentally, CNNs are feedforward Neural Net-
works (NNs) that utilize convolutional structures to learn, identify, and extract features from data
automatically. The primary components of a CNN include the convolutional layer, pooling layer,
and fully connected layer and can be seen in Figure 3.6 [Shi23].

Convolutional Layers

The convolutional layer is essential for extracting various features from input data through convolu-
tion operations. In this process, the input data, structured as a matrix, is combined with small 昀椀lter
matrices known as convolutional kernels. Multiple convolutional layers are typically employed to
merge a broad range of features into a single feature set, which is then passed on to subsequent
layers for further processing [Shi23].
Convolutional kernels, which are weight matrices usually sized 3x3, 5x5, or 7x7, slide across the
entire input matrix, applying convolution operations to each subregion, or patch [Shi23; Liv20].
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Figure 3.6: Time series classi昀椀cation with CNN. The Figure shows the primary components of a
CNN including the convolutional layer, pooling layer, and fully connected layer [Shi23]. Adapted
from [Gra19].

This produces a new convolved matrix, where each element re昀氀ects a feature value determined
by the kernel’s size and weights. By utilizing di昀昀erent convolutional kernels, the model can
generate multiple convolved features that are often more informative than the raw input data,
leading to improvements in the model’s performance [Liv20]. Figure 3.7 illustrates the basic
convolution process.

Figure 3.7: Schematic of the convolution process. Each feature map is convolved with a kernel,
producing a new output matrix. Adapted from [Che21].
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After the convolutional layers, a nonlinear activation function such as ReLU, as in Figure 3.4, is
typically applied, as it can enhance network performance by accelerating training during gradient
descent optimization [Liv20; Che23]. This is followed by a pooling layer to re昀椀ne the extracted
features further [Liv20].

Pooling Layers

The pooling layer is typically responsible for reducing the number of connections in the network by
performing downsampling on the convolved features. By extracting speci昀椀c values from the input
data, this downsampling process reduces the dimensionality of the data that enters the pooling
layer. The primary purpose of the pooling layer is to decrease computational complexity and
address issues related to over昀椀tting [Shi23].
Similar to the convolutional layer, the pooling layer uses a small sliding window that processes each
patch of the convolved features and outputs a new value based on a speci昀椀c operation de昀椀ned for
the pooling layer [Liv20]. For instance, Max Pooling selects the maximum value, while Average
Pooling calculates the average value within each patch. This approach produces output features
that are more robust to distortions and errors in individual neurons, as minor changes in the input
do not really a昀昀ect the pooled output values [Liv20; Shi23]. The methods of Max Pooling and
Average Pooling are illustrated in Figure 3.8.

Figure 3.8: Max Pooling and Average Pooling: The grey sliding window moves over the input, per-
forms the respective operation and combines the result into a single value. Adapted from [Che21].
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Fully Connected Layers

Usually, the Fully Connected (FC) layer is found at the end of a CNN architecture. Here, each
neuron is connected to all neurons of the previous layer. The input to the FC layer is a vector
created by 昀氀attening the feature maps from the last pooling or convolutional layer. As the network’s
classi昀椀er, the FC layer plays a crucial role in prediction making [Shi23]. The rough structure can
be seen in Figure 3.9.

Figure 3.9: The architecture of a fully connected layer. The input vector x is the result of the
昀氀attened output of the pooling layer. Each neuron is connected to all neurons in the previous layer.
The output vector y represents the di昀昀erent classes for classi昀椀cation. Adapted from [Zhu20].

3.3.3 LSTMs

LSTMs are an advanced type of RNNs [Shi23]. RNNs are equipped with internal memory
and feedback connections, allowing them to process sequential data by treating each input as an
independent entity while also considering the temporal order [Shi23; Liv20]. This enables RNNs to
capture time-dependent patterns in the data [Liv20]. However, RNNs face challenges, particularly
the vanishing gradient problem, which restricts their ability to learn long-term dependencies. As a
result, they struggle to retain and utilize information over long sequences [Shi23].
To overcome these limitations, various models have been developed, with LSTMs being one of the
most prominent. LSTMs address the vanishing gradient problem by storing valuable information
in memory cells and discarding unnecessary data, leading to generally better performance than
classical RNNs [Liv20; Shi23].
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Figure 3.10: LSTM layer architecture: In the Figure, the input is represented by X(t) at time t,
and the output is represented by y(t). C(t) is the cell state/memory. σ is the sigmoid function and
addition and multiplication are represented using + and x symbols. Adapted from [Yad24].

LSTM Layers

The basic LSTM layer architecture can be seen in Figure 3.10. In each computation step of an
LSTM, three inputs are processed:

• the new input signal X t,

• the previous hidden state Y t−1, and

• the previous cell state Ct−1.

The hidden state Y t−1 represents the short-term memory, playing a crucial role in processing the
current input. On the other hand, Ct−1 serves as the cell’s long-term memory, carrying information
across time steps [Isl20].
The key components of the LSTM cell and their functions are as follows:

• Forget gate f t: Determines how much of the information from the previous cell state Ct−1

should be retained or discarded. This is done using a sigmoid function as in Figure 3.3,
producing values between 0 and 1 to indicate the degree of forgetting [Cup22].

• Candidate cell state zt: Represents the new information that might be added to the cell
state [Isl20]. This candidate state is generated by applying a tanh function, de昀椀ned as
tanh(x) = 2

1+e−2x − 1. This scales the output values in the range [−1, 1] [Che23].
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• Input gate it: Decides the proportion of the candidate cell state zt that should be incor-
porated into the new cell state. Similar to the forget gate, it is calculated using a sigmoid
function [Cup22].

• Output gate ot: Regulates which part of the updated cell state Ct will be passed on as the
new hidden state Y t to the next time step [Cup22].

The updated cell state Ct is computed by combining the modi昀椀ed previous cell state Ct−1, as
dictated by the forget gate, with the candidate cell state zt, modulated by the input gate.
Finally, the new hidden state Y t is derived from the current cell state Ct, adjusted by the output
gate ot. This new hidden state Y t is then passed on to the next time step [Isl20].
The di昀昀erent states of the LSTM unit can be expressed mathematically as follows [Yad24]:

zt = tanh
(

WzX
t +RzY

t−1 + bz
)

it = σ
(

WiX
t +RiY

t−1 + bi
)

f t = σ
(

WfX
t +RfY

t−1 + bf
)

ct = ct−1 � f t + zt � it

ot = σ
(

WoX
t +RoY

t−1 + bo
)

yt = tanh
(

ct
)

� ot

The weights for the LSTM gates are de昀椀ned as follows [Yad24]:

• Weights for Bias: bz, bi, bf , bo ∈ RN

• Weights for Input: Wz, Wi, Wf , Wo ∈ RN×M

• Weights for Recurrent: Rz, Ri, Rf , Ro ∈ RN×M

Here, N represents the total number of LSTM blocks in the network, while M denotes the
total number of observations in the dataset. � represents the point-wise multiplication of two
vectors [Yad24].

3.3.4 CNN-LSTM

CNN and LSTM models are increasingly being combined into hybrid models to enhance activity
classi昀椀cation accuracy. The main architecture of the CNN-LSTM model involves the input layer,
the convolutional layer, the pooling layer, the sequential LSTM layer and the fully connected layer,
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wherein the 昀椀rst three layers belong to the CNN [Ahm23]. This approach leverages the unique
strengths of both models: LSTMs are e昀昀ective at capturing temporal patterns in data, while CNNs
excel at extracting frequency-based features [Koş23]. Although CNNs are not particularly suited
for capturing temporal patterns from either short- or long-term time series, LSTMs are speci昀椀cally
designed to handle complex temporal features sequentially by retaining information over time.
However, LSTMs are less pro昀椀cient in extracting spatial features [Che19]. By integrating these
capabilities, the hybrid model produces a richer and more comprehensive signal representation,
leading to better performance in activity classi昀椀cation tasks [Koş23]. Consequently, this archi-
tecture has been widely adopted for HAR tasks, where it is essential to consider both the sequential
and spatial characteristics of the data [Cup22]. However, it is important to acknowledge that the
increased complexity of the hybrid model results in higher computational costs. This trade-o昀昀
must be carefully managed, particularly in contexts where computational resources are limited, as
is often the case with wearable devices in HAR [Koş23].

3.4 Performance Evaluation

To e昀昀ectively evaluate the performance of the deep learning models, several evaluation metrics
are employed. The following section brie昀氀y outlines the computation of these metrics.

The confusion matrix is a widely used tool for performance evaluation. It presents a matrix where
the rows represent the true classes, and the columns the predicted classes. This matrix illustrates
the distribution of instances, with each entry corresponding to the number of classi昀椀ed instances
[Sch19]. An example is provided in Table 3.1.

Table 3.1: Confusion matrix. Each entry Ci,j , where i, j ∈ {1, . . . , K}, represents the number
of classi昀椀ed instances for K classes. Rows indicate the true class, while columns indicate the
predicted class. Adapted from [Sch19].

Predicted class
C1,1 C1,2 . . . C1,K

C2,1 C2,2 . . . C2,K

True class C3,1 C3,2 . . . C3,K
... ... . . . ...

CK,1 CK,2 . . . CK,K



22 CHAPTER 3. THEORETICAL BACKGROUND

The confusion matrix is particularly useful for deriving various performance metrics in a multiclass
classi昀椀cation problem, which is applicable in our case since we aim to distinguish between multi-
ple activities simultaneously. The performance metrics for a class k include sensitivity Sensk,
precision Preck, F1-score F1k, and balanced accuracy BalAcc [Sch19].

The calculations for these metrics are provided as follows [Sch19; Sto21]:

Sensk =
Ck,k

∑K

i=1 Ci,k

where Sensk represents the ratio of true positive instances to the total actual instances of class k.

Preck =
Ck,k

∑K

j=1 Ck,j

where Preck represents the ratio of true positives to the total predicted instances of class k.

F1k = 2 ·
Preck · Sensk
Preck + Sensk

where F1k represents the harmonic mean of Preck and Sensk.

BalAcc =
1

K

K
∑

k=1

Sensk

where BalAcc denotes the average sensitivity across all K classes.

To account for class imbalance, a weighted average of sensitivity, precision, and F1-score is
calculated as follows [Sto21]:

Metricweighted,i =

∑K

k=1 (metrici · wk)
∑K

k=1 wk

where wk represents the weight (or support) of class k, and metrici corresponds to the sensitivity,
precision, or F1-score.



Chapter 4

Methodology

4.1 Data Recordings

The dataset used for this work was recorded by Stoeve and colleagues. The study acquisition
is described in detail here [Sto21]. The relevant information for this work is described in the
following sections.

4.1.1 Data Acquisition

The dataset used in this study was captured by an IMU equipped with a tri-axis accelerometer
(± 16 g) and a tri-axis gyroscope (± 2000°/s). Each player was 昀椀tted with two sensors, one on each
foot, with the sensor embedded in the insole of the player’s standard soccer shoe. The insole’s
rigid material and cavity design ensured the sensor’s position remained stable without hindering
the player’s movements. The sensor and insole setup is illustrated in Figure 4.1. Data collection
was conducted at a sampling rate of 200 Hz. All sessions were recorded using at least one video
camera to facilitate accurate labelling.
The dataset collection process was guided by two primary objectives. First, obtaining a su昀케ciently
large volume of data was crucial to train the deep learning model e昀昀ectively. Second, real-world
data from soccer matches or training sessions was essential for evaluation purposes. Due to the
complexity and time involved in gathering real-world data, both controlled laboratory data and
real-world data from training sessions and games were collected. This dual approach enabled the
accumulation of a comprehensive dataset.
The laboratory sessions include controlled exercises, for example dribbling through a cone course
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followed by a medium-distance pass, as well as semi-controlled activities such as passing the ball
to a teammate, playing the ball back and then shooting at the goal. These recordings are referred
to as lab sessions. In contrast, the real-world data, hereafter referred to as 昀椀eld sessions, were
recorded without a 昀椀xed protocol, capturing soccer teams during their regular training sessions or
matches. An example of a typical real-world data recording session is shown in Figure 4.1 [Sto21].

Figure 4.1: Hardware setup and example of in-昀椀eld data acquisition. Sketch showing the IMU
sensor placement in the sole of a soccer shoe with its coordinate system (left) and a snapshot
from an 11-a-side game for capturing real-game data (right). The video recording was used for
labelling the data [Sto21].

4.1.2 Dataset

In total, data from 181 sessions were collected, comprising 38 昀椀eld sessions and 143 laboratory
sessions, involving 836 players (97 % male, 3 % female). The players included youth participants
from the German U12 age group up to adult players. Due to hardware failures, data were recorded
for only one foot in 292 instances. The dataset comprises 666.880 labelled ball contacts, including
581.659 null contacts, 49.956 dribbling contacts, 18.394 short passes medial, 4.900 short passes
other, 2962 long passes, 8.904 shots, and 105 ambiguous shots. The average duration of lab
sessions was 35 minutes (SD = 17), while 昀椀eld sessions averaged 73 minutes (SD = 38). Lab
sessions typically involved an average of four players (SD = 3), whereas 昀椀eld sessions had an
average of eight players (SD = 4). The largest recorded session involved 17 players [Sto21].
The same data split as Stoeve and colleagues was used [Sto21]. However, the data used to optimize
peak detection, which is explained in more detail in Chapter 4.3, was excluded from the training
and test set. Consequently, our training dataset consists of 153 sessions with 687 players, while
our test dataset contains 19 sessions with 129 players. The class distribution in the test set was
similar to the training set. The test set includes 10 laboratory sessions and nine 昀椀eld sessions to
provide a comprehensive performance evaluation of the model under both controlled and real-world
conditions. The overall data split can be seen in Figure 4.2.
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Figure 4.2: The overall data split. 85 % of the sessions are used for training, 10 % for testing and
5 % for peak detection optimization.

4.1.3 Labelling
The ball contacts were annotated by trained experts [Sto21]. The labelling distinguished between
seven di昀昀erent classes, with further di昀昀erentiation based on the use of the left or right foot. These
seven classes were organized into four main categories: the null class, dribbling, passing, and
shooting. Within the passing and shooting categories, additional subcategories were identi昀椀ed to
further specify the type of action. An overview if the ball contact types with their corresponding
classes and descriptions is given in Table 4.1. In the following, the classes light contact, short pass
medial, short pass other, long pass, shot and ambiguous shot are de昀椀ned as events.

Table 4.1: Overview of ball contact types with corresponding classes and descriptions. Adapted
from [Sto21].

Ball Contact Type Description Class
none no contact, e.g. player is running or sprinting null
strong contact strong contact, e.g. when the ball bounces o昀昀 the foot null
ambiguous contact strong contact, e.g. during a duel null
ambiguous short pass unconventional short pass, e.g. using the heel null
ambiguous range pass unconventional range pass, e.g. applying spin to the ball null
juggling kick player is juggling, e.g. holds the ball in the air null
light contact small contact while player is not moving or during dribbling dribbling
short pass medial short pass with the medial part of the foot short pass medial
short pass other pass with another part of the foot than medial short pass other
long pass pass over longer distance long pass
shot kick directed towards the goal shot
ambiguous shot non-standard kick directed towards the goal, e.g. bicycle kick ambiguous shot
left/right foot used to make contact with the ball foot
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4.2 Preprocessing
Stoeve and colleagues performed a synchronization routine at the beginning of each session to
synchronize the IMU data of the two sensors. The sensors were attached to a rod and smashed
against the 昀氀oor three times. This action produced three distinct peaks across all axes in the
acceleration data. A CNN was trained to detect these signature peak patterns. If the CNN could
not detect the peaks, the moment when the rod 昀椀rst touched the ground was manually determined
from video recordings. The timeline was then interpolated, estimating the sampling frequency
based on the number of samples between the detected peaks and the timing observed in the video.
Subsequently, synchronization was manually veri昀椀ed for all recordings by checking labelled shot
events. Finally, all IMU signals were normalized between -1 and 1 [Sto21].

4.3 Segmentation
In order to obtain comprehensive but still compact input data for our DL network, the peak de-
tection method developed by Schuldhaus was applied [Sch19], which was also used by Stoeve
and colleagues [Sto21]. This method identi昀椀es ball contacts by detecting peaks in smoothed
gyroscope data from the IMU, as these peaks are key indicators for relevant movement events.
A second-order high-pass 昀椀lter was used for smoothing, with a window length of 400 samples
(equivalent to 2 seconds). Stoeve and colleagues previously evaluated di昀昀erent window lengths
(1s, 1.5s, and 2s) and concluded that a 2-second window was optimal. The windows were centred
around the detected peaks. If peaks were closely spaced, only the peak with the highest magnitude
was considered, while the others were neglected [Sto21].

The peak detection method was applied as follows: when a peak was detected, indicating a potential
ball contact, the data around that peak was further extracted and analyzed.
If the data was classi昀椀ed as one of our target classes, it was saved with the appropriate label and
the window was moved to a new position according to:

posnew = pospeakdetected + lengthwindow × overlap

where pospeakdetected represents the position of the detected peak, lengthwindow is the length of the
window in samples, and overlap is the fraction of the window that overlaps with the previous one.
If the data did not belong to one of the target classes, it was categorized as a null class and the
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window was moved forward by:

posnew = poscurrent + lengthwindow × overlap

where poscurrent is the current position of the window.

Like Stoeve and colleagues, an overlap of 75 % was chosen [Sto21]. With a window size of 400
samples, this corresponds to an overlap of each window by 100 samples, as each window is shifted
by 75 %. This overlap ensures that any additional peaks located near the current window boundary
are not missed. This is particularly relevant in scenarios such as dribbling, where the optimal
minimum distance for successful peak detection has been determined to be 100 samples. Since
the peaks are always centred within the window, additional peaks may still emerge within the
subsequent 200 samples of the same window. However, the 100-sample overlap ensures that if
another peak occurs within the current window, at least 100 samples away from the previous one,
it will be captured due to the overlap, preventing any peaks from being overlooked. This ensures
that target events are not missed, thus increasing the overall sensitivity of event detection.

Unlike Stoeve and colleagues, who focused on detecting shots and passes characterized by rel-
atively large amplitude peaks, this thesis aims to identify more frequent spaced ball contacts,
such as those occurring during dribbling [Sto21]. To avoid over昀椀tting the method to the entire
dataset and to promote better generalization, the peak detection process was optimized using data
from only 33 players from nine di昀昀erent sessions. Of these sessions, eight were conducted under
laboratory conditions, while one was a 昀椀eld session. This data was excluded from further analysis.
Speci昀椀cally, three hyperparameters were adjusted: fcut, tresh_abs and min_dist. fcut denotes the
昀椀lter’s cuto昀昀 frequency, tresh_abs the signal amplitude within the peak detection, and min_dist
de昀椀nes the minimum distance between two consecutive events from the target class in samples.
The second-order high-pass 昀椀lter used in peak detection was retained.

To optimize the cuto昀昀 frequency fcut, the implementation by Schuldhaus was followed. Given
that peaks are likely to occur in higher frequency bands, the magnitude of the Discrete Fourier
Transformation (DFT) coe昀케cients for the accelerometer axes was calculated, considering only
events from the target class. The energy was computed by summing the squared magnitudes of the
coe昀케cients of the DFT. The determined fcut was set to the frequency at which 90 % of the energy
level was reached. The 昀椀nal cuto昀昀 frequency was determined as the median of the individual
cuto昀昀 frequencies from the considered instances [Sch19].
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To optimize tresh_abs and min_dist, a grid search was conducted. The grid search parameters were
prede昀椀ned, as listed below. The goal was to maximize sensitivity, ensuring that all ball contacts
from the target classes were detected without including too many null-class contacts. The search
space for the grid search of parameters tresh_abs and min_dist was:

tresh_abs ∈ {0.1 · k}k∈{1,2,3,4}

min_dist ∈ {50 · k}k∈{1,2,3,4,5,6}

To address the imbalance in the dataset, rebalancing was performed at the end of the preprocessing
pipeline using a combination of random undersampling and Adaptive Synthetic Sampling Approach
(ADASYN). ADASYN is designed to address challenges associated with learning from imbalanced
datasets by focusing on the minority class. It creates synthetic data for minority class samples,
but instead of treating all samples equally, it generates more synthetic instances for those that are
harder to classify. This approach enhances the learning process by reducing the bias caused by
the class imbalance and adjusting the classi昀椀cation decision boundary to better handle the more
di昀케cult examples in the dataset. As a result, ADASYN helps improve the model’s ability to learn
from imbalanced data [He08].
Our rebalancing works as follows: 昀椀rst the mean frequency of all instances within the target classes
was calculated, then generate synthetic instances for the underrepresented target classes to this
mean value and subsequently undersample the overrepresented classes, including the null class.
This approach helps mitigate class imbalance caused by peak detection as well as the naturally
higher frequency of certain soccer events, such as the more frequent contacts during dribbling
compared to shooting, for instance.
Additionally, the sensor placement on the left or right foot was determined based on the sensor ID
tagged during data collection. Figures 4.3 and 4.4 display the acceleration signals on the left and
the gyroscope signals on the right. Each row corresponds to a di昀昀erent action, all executed with
the left foot. Figure 4.3 includes examples from the null class, dribbling, short pass medial, and
short pass other, while Figure 4.4 presents examples from the long pass, shot class, and ambiguous
shot class. The only exception is the long pass in Figure 4.4, which includes actions performed
with both the left and right foot. Notably, the X component of the gyroscope data and the Y

component of the accelerometer data are mirrored.
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Figure 4.3: Examples of the null class and target classes: Dribbling, Short Pass Medial, and Short
Pass Other. The accelerometer signals are shown on the left, while the gyroscope signals are on
the right. Each window contains 400 samples and is normalized to a range between -1 and 1.
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Figure 4.4: Examples of the target classes: Long Pass, Shot, and Ambiguous Shot. The accelero-
meter signals are shown on the left, while the gyroscope signals are on the right. Each window
contains 400 samples and is normalized to a range between -1 and 1.
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4.4 Models and Hyperparameter Optimization

Given the similarity between our task and that of Cuperman and colleagues, who aimed to classify
soccer-speci昀椀c activities, their basic framework was adapted to meet the speci昀椀c requirements
of this project. Cuperman and colleagues achieved a classi昀椀cation accuracy of up to 97.53 %
using a combination of CNN and CNN-LSTM models, which showed strong results in activity
classi昀椀cation [Cup22]. Following their approach, both a CNN and a CNN-LSTM model were
implemented for the classi昀椀cation, adapting their model structure and optimizing them for our
data and objectives. Therefore, in the following sections, the CNN and CNN-LSTM models will
be optimized and analyzed separately, allowing for a comprehensive comparison of both models
at the end.
Six input streams were used: three from the accelerometer and three from the gyroscope. In this
way, both linear and rotational movements can be captured, helping in distinguishing between
di昀昀erent events, as each movement has its own characteristics.

The basic structure of our models for the CNN and CNN-LSTM is shown in Figure 4.5.
Both models were optimized with the same approach using the Optuna framework with Bayesian
optimization [Aki19]. The optimization process involved 100 trials. Before each trial, the events
were shu昀툀ed to ensure that the model was exposed to a di昀昀erent distribution of the data, avoiding
possible biases due to the order of the data. The maximum number of epochs was set to 100, with
a 昀椀xed batch size of 64. The ADAM optimizer was used for both models due to his adaptability
and e昀케ciency in training complex models [Kin14].
A 昀椀ve-fold strati昀椀ed cross-validation was used, ensuring each fold maintained a balanced distri-
bution of instances to address the class imbalance in the dataset. In each of the 昀椀ve iterations,
only the training folds were balanced using our class balancing method, while the validation fold
retained the original class distribution for a realistic evaluation, demonstrating how the model
would respond to real-world conditions. During training, the weighted F1-score was continuously
monitored after each batch to evaluate the model performance. An early stopping was imple-
mented, which terminated the training process if the weighted F1-score did not improve in 20
consecutive epochs. The learning rate was dynamically adjusted using a learning rate scheduler
that reduced the learning rate by a factor of 0.5 if no improvement in performance was observed
over 10 epochs. The minimum learning rate was set to 0.00001 to prevent the learning rate
from becoming too small and stalling the training progress. After cross-validation, the mean
of the weighted F1-scores from all folds was determined to calculate the 昀椀nal F1-score for each trial.
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Figure 4.5: The basic structure of our CNN model (left) and CNN-LSTM model (right) is shown.
The grey blocks represent the 昀椀xed core structure of the models, while the blue blocks indicate
optional components that were included or adjusted during hyperparameter optimization.

The main hyperparameters that were optimized are described below:

• 昀椀lters: The number of 昀椀lters in the Conv1D layers.

• 昀椀lter_LSTM: The number of 昀椀lters in the LSTM layer.

• kernel_size: The size of the convolutional kernel in the Conv1D layers.

• learning_rate: The learning rate for the optimizer.

• num_layers: The number of times the combination of Conv1D, Dropout, and MaxPool-
ing1D layers is repeated.

• use_dense_dropout: Adds an optional Dense layer with 64 units and a Dropout layer (rate
0.5) after the Flatten layer.



Chapter 5

Results

5.1 Peak Detection Optimization
When optimizing the cut-o昀昀 frequency fcut for the segmentation, an optimal value of 22.7Hz
was determined. Since a high-pass 昀椀lter for our gyroscope data was used, all frequencies below
22.7Hz are 昀椀ltered out. In this way, low-frequency noise is removed while the higher-frequency
signals remain relevant for the segmentation. Additionally, the hyperparameters tresh_abs and
min_dist were optimized using a grid search. The grid search results indicated that the optimal
values were tresh_abs = 0.1 and min_dist = 100 samples, achieving a sensitivity of 91 %. This
means that with these parameter settings, the peak detection algorithm correctly detected 91 % of
the originally labelled target events.

5.2 Hyperparameter Optimization
Table 5.1 gives an overview of the search spaces and the 昀椀nal results for the hyperparameters.

Table 5.1: Overview of the CNN and CNN-LSTM models and the respective results. Each
hyperparameter was optimized individually within the corresponding search space.

Hyperparameter Sampling Search Space Result CNN Result CNN-LSTM
昀椀lters integer 16 - 128 112 114
昀椀lter_LSTM categorical [32,64,128] - 64
kernel_size categorical [3, 5] 5 5
learning_rate log-uniform 1× 10−5 - 1× 10−2 1.52× 10−3 0.31× 10−3

num_layers integer 0 - 3 3 3
dense_dropout categorical [True, False] False False
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5.3 Models

5.3.1 CNN
The CNN achieved a weighted F1-score of 88.26 % in the best trial during hyperparameter tuning
with strati昀椀ed 昀椀ve-fold cross-validation. The hyperparameters from this trial were saved and the
昀椀nal model was con昀椀gured accordingly. The model comprises four convolutional blocks, each
followed by a pooling layer. All convolutional layers are activated using the ReLU activation
function. While the 昀椀rst block only includes a convolutional and pooling layer, the subsequent three
blocks also contain a dropout layer to reduce over昀椀tting. The pooling layers progressively reduce
the input dimensionality. After 昀氀attening the features, the model outputs predictions through
two dense layers: one for event prediction using softmax activation, and another for binary foot
classi昀椀cation with sigmoid activation. In total, there were 210,792 trainable parameters.
The 昀椀nal architecture of the CNN model is shown in Table 5.2 and is further illustrated in Figure
5.1 for better comprehension.

Table 5.2: Summary of the CNN model architecture, showing the layer types, parameters, output
shapes, and the total number of trainable parameters in each layer.

Layer Type Parameter Output Shape # of Parameters
InputLayer (400, 6) 0
Conv1D 昀椀lter: 112, kernel size: 5 (396, 112) 3,472
MaxPooling1D size: 2, strides: 2 (198, 112) 0
Conv1D 昀椀lter: 112, kernel size: 5 (194, 112) 62,832
Dropout rate: 0.5 (194,112) 0
MaxPooling1D size: 2, strides: 2 (97, 112) 0
Conv1D 昀椀lter: 112, kernel size: 5 (93, 112) 62,832
Dropout rate: 0.5 (93, 112) 0
MaxPooling1D size: 2, strides: 2 (46, 112) 0
Conv1D 昀椀lter: 112, kernel size: 5 (42, 112) 62,832
Dropout rate: 0.5 (42, 112) 0
MaxPooling1D size: 2, strides: 2 (21, 112) 0
Flatten (2352) 0
Dense - Events Output activation: softmax (7) 16,471
Dense - Foot Output activation: sigmoid (1) 2,353
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Figure 5.1: Summary of the CNN model architecture. The model consists of four blocks of
Conv1D, MaxPooling1D, and Dropout layers, followed by a Flatten layer. The output branches
into two separate Dense layers, classifying the foot used (left/right) and the type of event (seven
possible classes).



36 CHAPTER 5. RESULTS

Overall Scores

The model was then trained again with the fully rebalanced training data and evaluated using the
unknown test data. The same training settings set during the hyperparameter optimization were
used for this training. Figure 5.2 shows the trend in accuracy for the di昀昀erent events and the foot
over the epochs. In addition, the total loss over the epochs for the entire model is shown on the
right-hand side of the Figure.

Figure 5.2: In the 昀椀rst and second plots, the training and testing accuracy for the events and the
foot are shown over the epochs. The third plot illustrates the training and testing loss for the entire
model throughout the epochs.

As presented in Table 5.3, the model demonstrates good overall performance when evaluated
on both laboratory and real game data, achieving a weighted F1 score of 92.54 % for event
di昀昀erentiation and 97.83 % for foot classi昀椀cation. The high weighted sensitivity values, 94.47 %
for the events and 97.84 % for foot classi昀椀cation, indicate that the model correctly identi昀椀es most
positive cases. However, notable results are found in the balanced accuracy scores. In contrast to
the foot classi昀椀cation, where the balanced accuracy is high at 97.87 %, the balanced accuracy for
the general events is only 40.41 %. Overall, the model demonstrates better performance in foot
classi昀椀cation compared to its ability to distinguish between the seven di昀昀erent classes.
It is also worth noting that event di昀昀erentiation performs better with the real game data, achieving
a weighted F1 score of 91.43 %, compared to 86.15 % with the laboratory data. Conversely, foot
classi昀椀cation is more accurate with the laboratory data, reaching a weighted F1 score of 99.20 %,
while only 97.22 % was achieved with the real game data.
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Table 5.3: Performance metrics for event and foot predictions with the corresponding scores.

Metric Laboratory Test Set - Score Real Game Set - Score Overall - Score
Events Accuracy 83.61 % 88.82 % 91.21 %

Weighted Sensitivity 90.45 % 95.11 % 94.47 %
Weighted Precision 83.61 % 88.82 % 91.21 %

Weighted F1 86.15 % 91.43 % 92.54 %
Balanced Accuracy 53.71 % 32.31 % 40.41 %

Foot Accuracy 99.20 % 97.22 % 97.84 %
Weighted Sensitivity 99.20 % 97.22 % 97.84 %
Weighted Precision 99.20 % 97.22 % 97.84 %

Weighted F1 99.20 % 97.22 % 97.83 %
Balanced Accuracy 99.20 % 97.20 % 97.87 %

Events & Foot Total Loss 0.5798 0.5375 0.4485

Detailed Score Composition

For a more detailed analysis, the confusion matrices can be analyzed, o昀昀ering insights into how
well each class is performing. The confusion matrices for the CNN, which show the di昀昀erent
events and the distinction between the feet, have been normalized between 0 and 1 to allow for
clearer comparisons between classes and are presented in Figure 5.3 and 5.4.
Overall, the results indicate that the null class (unknown), light contact during dribbling, short
pass medial, and shots exhibit the highest accuracy. However, in 19 % of the cases, light contacts
are misclassi昀椀ed as the null class (unknown). Short pass medial is most frequently confused with
short pass other (11 % of the cases), but it still maintains a solid accuracy of 68 %. In contrast,
short pass other is correctly classi昀椀ed in only 45 % of cases. This class is predominantly confused
with short pass medial (27 %), but is also often misclassi昀椀ed as the null class (unknown) (12 %)
and light contact (10 %). Among the passing classes, long pass performs the worst, being correctly
classi昀椀ed in only 21 % of cases. The most common misclassi昀椀cation for long pass is with shots
(36 %), followed by short pass medial (24 %) and short pass other (12 %). In contrast, shots
are correctly identi昀椀ed 70 % of the time, though they are occasionally confused with short pass
medial (15 %). The ambiguous shot class, however, performs the poorest, with no instances
being correctly classi昀椀ed. Instances from this class are most commonly misclassi昀椀ed across three
categories: shots, short pass other, and the null class (unknown), each with an accuracy of 27 %.

The model distinguishes between the left and right foot very well. The accuracy is 97 % for the
left foot and 99 % for the right foot, demonstrating very good performance in foot di昀昀erentiation.
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Figure 5.3: Confusion matrix for event predictions. The darker the colour, the more often the
predicted class matches the true class. The matrix shows the classi昀椀cation performance, with the
values along the diagonal representing correct predictions and the elements outside the diagonal
representing wrong classi昀椀cations. The values were normalized between 0 and 1, where 0 indicates
no occurrences and 1 represents perfect classi昀椀cation for that class.

Figure 5.4: Confusion matrix for foot predictions. The values were normalized between 0 and 1,
where 0 indicates no occurrences and 1 represents perfect classi昀椀cation for that class.
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As previously discussed in Chapter 4.1.2, the test dataset comprises a combination of laboratory
settings data and real game data. The following sections provide a detailed overview of the model’s
performance when evaluated separately on each test set for the CNN.

Laboratory Test Set

The confusion matrix is presented below in Figure 5.5 and 5.6 for the di昀昀erentiation between the
events and the two feet, based exclusively on the laboratory test data set.

Figure 5.5: Confusion matrix for event predictions based on the laboratory test set. The values are
normalized between 0 and 1.
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Figure 5.6: Confusion matrix for foot predictions based on the laboratory test set. The values are
normalized between 0 and 1.

As with the overall performance shown in Figure 5.3, the null class (unknown) achieves the highest
accuracy at 85 %. However, similar to the combined test set, it is most often confused with
light contacts (11 %). Notably, light contacts are more accurately distinguishable from other
classes, achieving an accuracy of 81 %, although they are frequently misclassi昀椀ed as the null class
(unknown) (10 %). The short pass medial class also demonstrates relatively strong performance,
with an accuracy of 72 %. Meanwhile, the short pass other class maintains the same accuracy as
observed in the overall test set at 45 %, with the most frequent misclassi昀椀cation occurring with
short pass other (27 %). Among the events, long pass performs the least e昀昀ectively, with a correct
classi昀椀cation rate of only 34 %. It is most often misidenti昀椀ed as either a short pass medial (28 %)
or a shot (24 %). The shots class achieves a robust accuracy of 77 %. Notably, the ambiguous shot
class is absent from the laboratory dataset.
The model distinguishes between the feet very accurately on the laboratory dataset, achieving
correct classi昀椀cation in 99 % of cases for both left and right.
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Real Game Test Set

In the real game test dataset, the null class (unknown) is well distinguished from the other classes
with high accuracy of 91 %. Light contacts, however, are recognized with lower accuracy com-
pared to the laboratory sessions, achieving only 70 %. The short pass medial class shows similar
behaviour to the lab sessions, being most frequently confused with short pass other (16 %), yet
correctly classi昀椀ed in 65 % of cases. Conversely, short pass other performs better under real-world
scenarios, with an accuracy of 52 %, though it is still often misclassi昀椀ed as short pass medial
(22 %). Long pass continues to perform among the worst, with only 18 % correct classi昀椀cation and
nearly half of the cases (45 %) misclassi昀椀ed as a shot. Shots perform worse under real conditions,
achieving only 59 % accuracy compared to 77 % in the laboratory test set.
As previously mentioned, ambiguous shots appear only in real scenarios; however, they are never
correctly classi昀椀ed and are most frequently misidenti昀椀ed as short pass other (53 %).
The model continues to distinguish well between the two feet, though it performs slightly worse
than under laboratory settings, with 98 % correct classi昀椀cations for the left foot and 97 % for the
right foot.

The results can be seen in Figures 5.7 and 5.8 for the events and the foot di昀昀erentiation, based
exclusively on the real game test data set.
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Figure 5.7: Confusion matrix for event predictions based on the real game test set. The values are
normalized between 0 and 1.

Figure 5.8: Confusion matrix for foot predictions based on the real game test set. The values are
normalized between 0 and 1.
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Null-Pass-Shot Classi昀椀cation

To gain a broader view of the classi昀椀cation results based on the entire test dataset, the events were
additionally grouped into three main categories: null, passes, and shots. The null class includes
“null class (unknown)” as well as “light contacts.” Passes comprise “short pass medial,” “short
pass other,” and “long pass,” while the shots category consists of “shot” and “ambiguous shot.”
The results are displayed in 昀椀gure 5.9.

Figure 5.9: Confusion matrix for the grouped classes: null, pass and shot

The null class is recognized fairly accurately, with 97 % accuracy for null class (unknown) and
91 % for light contacts. However, 34 % of ambiguous shots are also misclassi昀椀ed as part of the null
class. Passes are relatively well separated from the null class. However, passes are misclassi昀椀ed as
shots in 27 % of cases and as ambiguous shots in 40 % of cases. Shots are correctly classi昀椀ed
with 70 % accuracy, while ambiguous shots are correctly identi昀椀ed only 27 % of the time. Shots
are most often misclassi昀椀ed as long passes (36 %).
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5.3.2 CNN-LSTM
The CNN-LSTM achieved a weighted F1-score of 87.35 % in the best trial during hyperparameter
tuning with strati昀椀ed 昀椀ve-fold cross-validation. The hyperparameters from this trial were saved,
and the 昀椀nal model was con昀椀gured accordingly.
Like the standard CNN model 5.3.1, this architecture features four convolutional blocks, each
followed by a pooling layer. However, the key di昀昀erence is that the 昀椀nal block is followed by
an LSTM layer before the 昀椀nal classi昀椀cation. All convolutional layers use the ReLU activation
function, whereas the LSTM layer uses the tanh activation function. While the 昀椀rst block contains
only a convolutional and pooling layer, the subsequent three blocks also include dropout layers
to reduce over昀椀tting. The pooling layers progressively downsample the input dimensions. After
the features are 昀氀attened, they are passed through an LSTM layer that captures the temporal
dependencies in the data. As with the previous CNN model, the output consists of two dense
layers: one with softmax activation for event prediction and another with sigmoid activation for
binary foot classi昀椀cation. The model contains a total of 828,840 trainable parameters.
The 昀椀nal architecture of the CNN-LSTM model is shown in Table 5.4 and is further illustrated in
Figure 5.10 for better comprehension.

Table 5.4: Summary of the CNN-LSTM model architecture, showing the layer types, parameters,
output shapes, and the total number of trainable parameters in each layer.

Layer Type Parameter Output Shape # of Parameters
InputLayer (400, 6) 0
Conv1D 昀椀lter: 114, kernel size: 5 (396, 114) 3,534
MaxPooling1D size: 2, strides: 2 (198, 114) 0
Conv1D 昀椀lter: 114, kernel size: 5 (194, 114) 65,094
Dropout rate: 0.5 (194,114) 0
MaxPooling1D size: 2, strides: 2 (97, 114) 0
Conv1D 昀椀lter: 114, kernel size: 5 (93, 114) 65,094
Dropout rate: 0.5 (93, 114) 0
MaxPooling1D size: 2, strides: 2 (46, 114) 0
Conv1D 昀椀lter: 114, kernel size: 5 (42, 114) 65,094
Dropout rate: 0.5 (42, 114) 0
MaxPooling1D size: 2, strides: 2 (21, 114) 0
Flatten (2394) 0
LSTM 昀椀lter: 64 (64) 629,504
Dense - Events Output activation: softmax (7) 455
Dense - Foot Output activation: sigmoid (1) 65
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Figure 5.10: Summary of the CNN-LSTM model architecture. The model consists of four blocks
of Conv1D, MaxPooling1D, and Dropout layers, followed by a Flatten and LSTM layer. The
output branches into two separate Dense layers, classifying the foot used (left/right) and the type
of event (seven possible classes).
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Overall Scores

The same approach as with the CNN model was used. The model was trained again with the
fully rebalanced training data and evaluated on the unseen test data. The training settings from
the hyperparameter optimization for the CNN-LSTM model were also applied here. Figure 5.11
shows the trend in accuracy for the di昀昀erent events and the foot classi昀椀cation over the epochs.
Additionally, the total loss over the epochs is depicted on the right-hand side of the Figure.

Figure 5.11: In the 昀椀rst and second plots, the training and testing accuracy for the events and the
foot are shown over the epochs. The third plot illustrates the training and testing loss for the entire
model throughout the epochs.

As illustrated in Table 5.5, the model performs generally well, achieving a weighted F1 score
of 90.08 % for distinguishing between di昀昀erent events and a weighted F1 score of 96.27 % for
foot classi昀椀cation. The weighted sensitivity values are comparable to those of the CNN, with
94.01 % for the events and 96.28 % for the feet. However, the weighted precision for the events is
lower, with the model reaching 87.66 %, whereas the CNN achieved a higher score of 91.21 %.
In contrast, the model achieves a similar weighted precision of 96.28 % for foot classi昀椀cation,
comparable to the CNN. As already noted with the CNN, the balanced accuracy for the events is
for the CNN-LSTM also particularly poor, with a score of 36.67 %. The CNN also only reached
a score of 40.41 %. In contrast, the balanced accuracy for the foot classi昀椀cation remains strong
at 96.18 %.
Additionally, the event prediction performs better on the real game dataset, achieving a weighted
F1 score of 90.87 % compared to 85.17 % on the laboratory data. In contrast, foot classi昀椀cation
works more accurately under controlled settings, with a weighted F1 score of 99.17 % on the
laboratory data, while reaching only 95.17 % under real-world conditions.
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Table 5.5: Performance metrics for event and foot predictions with the corresponding scores.

Metric Laboratory Test Set - Score Real Game Set - Score Overall - Score
Events Accuracy 82.90 % 88.42 % 87.67 %

Weighted Sensitivity 89.76 % 94.70 % 94.01 %
Weighted Precision 82.90 % 88.42 % 87.66 %

Weighted F1 85.17 % 90.87 % 90.08 %
Balanced Accuracy 52.71 % 31.42 % 36.67 %

Foot Accuracy 99.17 % 95.20 % 96.27 %
Weighted Sensitivity 99.17 % 95.17 % 96.28 %
Weighted Precision 99.17 % 95.17 % 96.27 %

Weighted F1 99.17 % 95.17 % 96.27 %
Balanced Accuracy 99.19 % 95.04 % 96.18 %

Events & Foot Total Loss 0.5470 0.5063 0.5222

Detailed Score Composition

Overall, it can be observed that the CNN-LSTM model does not perform quite as well as the CNN.
However, the CNN-LSTM achieves the best accuracy results for the null class (unknown) (89 %),
light contact during dribbling (76 %), short pass medial (74 %), and shots (68 %). Similar to the
CNN, light contacts are most frequently confused with the null class (unknown) (14 % of the cases).
Short pass medial performs better with the CNN-LSTM, achieving 74% accuracy, compared to
68 % with the CNN. Short pass other is recognized almost equally well by the CNN-LSTM as by
the CNN, with an accuracy of 43 %. However, it is misclassi昀椀ed as short pass medial in 30 %
of cases and as light contact in 11 % of cases. As with the other model, the long pass is the
worst-performing pass type, with an accuracy of only 20 %. It is most often misclassi昀椀ed as a shot
(42 %) or short pass medial (26 %). Shots, on the other hand, are correctly identi昀椀ed 68 % of the
time, with the most common confusion being with short pass medial (15 %). The ambiguous shot,
as with the CNN, is also not correctly identi昀椀ed a single time by the CNN-LSTM.
The model also distinguishes between the left and right foot well, predicting correctly in 96 % of
cases for both feet. However, this is slightly less accurate compared to the CNN, which achieved
even better results.

In the following, a more detailed analysis of the scores is displayed, presenting the event di昀昀eren-
tiation in Figure 5.12 and foot distinction in Figure 5.13. The values have been normalized to a
scale between 0 and 1.
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Figure 5.12: Confusion matrix for event predictions. The darker the colour, the more often the
predicted class matches the true class. The matrix shows the classi昀椀cation performance, with the
values along the diagonal representing correct predictions and the elements outside the diagonal
representing wrong classi昀椀cations. The values were normalized between 0 and 1, where 0 indicates
no occurrences and 1 represents perfect classi昀椀cation for that class.

Figure 5.13: Confusion matrix for foot predictions. The values were normalized between 0 and 1,
where 0 indicates no occurrences and 1 represents perfect classi昀椀cation for that class.
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As noted in Chapter 4.1.2, the test dataset combines lab and real game data. The following sections
detail the CNN-LSTM model’s performance.

Laboratory Test Set

The following displays the confusion matrix for distinguishing between the various events in Figure
5.14 and the two feet in Figure 5.15, based only on the laboratory test dataset.

Figure 5.14: Confusion matrix for event predictions based on the laboratory test set. The values
are normalized between 0 and 1.
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Figure 5.15: Confusion matrix for foot predictions based on the laboratory test set. The values are
normalized between 0 and 1.

In the laboratory data, the null class (unknown) is classi昀椀ed just as well as the light contact class,
both of which achieve an accuracy of 84 %. These two classes are most frequently confused with
each other. The short pass medial class achieves an accuracy of 79 % and thus performs better than
the overall performance shown in Figure 5.12 when training with the whole test set. In contrast,
the short pass other is not well recognized with an accuracy of only 30 %. It is most frequently
misinterpreted as a short pass medial (39 %) and sometimes also as a shot (16 %). The long pass
performs slightly better with 38 % correct classi昀椀cations, but is similarly frequently misclassi昀椀ed
as a short pass medial (35 %) and occasionally as a shot (19 %). Shots perform relatively reliably
with 74 % accuracy, although they are most frequently misclassi昀椀ed as a short pass medial (13 %).
As mentioned above, ambiguous shots are not included in the test set. The model distinguishes the
feet with very high accuracy in the laboratory dataset, correctly identifying 100 % of the left foot
cases and 99 % of the right foot cases.
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Real Game Test Set

The confusion matrix in Figure 5.16 and 5.17 illustrates the model’s ability to di昀昀erentiate between
the various events and between the two feet, based only on the real game test dataset.

Figure 5.16: Confusion matrix for event predictions based on the real game test set. The values
are normalized between 0 and 1.
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Figure 5.17: Confusion matrix for foot predictions based on the real game test set. The values are
normalized between 0 and 1.

The CNN-LSTM model classi昀椀es the null class (unknown) in the real game data more accurately
than in the laboratory data, achieving an accuracy of 90 %. However, light contacts are again
classi昀椀ed less accurately than with the laboratory data, reaching only 72 %. Short pass medial is
relatively well distinguishable from other classes with an accuracy of 75 %, whereas short pass
other performs worse, with only 44 % correct classi昀椀cations. In 30 % of cases, short pass other is
misclassi昀椀ed as short pass medial. Notably, nearly half (49 %) of the long passes are misclassi昀椀ed
as shots, with only 12 % correctly identi昀椀ed. A large portion (24 %) of long passes is also classi昀椀ed
as short pass medial. Shots are correctly identi昀椀ed 55 % of the time, while ambiguous shots are
never correctly classi昀椀ed; they are most frequently misclassi昀椀ed as light contacts and short pass
other (both 33 %). The model correctly identi昀椀es the left foot in 95 % of cases and the right foot
in 96 %.
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Null-Pass-Shot Classi昀椀cation

Figure 5.18: Confusion matrix for the grouped classes: null, pass and shot

When examining the overall distinction between the null class (including light contacts), passes,
and shots based on the whole test dataset, we see that the null class achieves high accuracy, with
96 % for the unknown and 90 % for light contacts. Passes are also well di昀昀erentiated from the null
class, with only 3 % and 10 % misclassi昀椀cations, respectively. However, distinguishing passes
from the individual shot class is more challenging, with a misclassi昀椀cation rate of 28 %. The
ambiguous shot category is classi昀椀ed as a pass in 60 % of cases. Shots are better separated from
the null class than passes, with 68 % correctly classi昀椀ed, though they are most often confused
with long passes (42 %).





Chapter 6

Discussion

To explore whether a DL model can e昀昀ectively recognize speci昀椀c soccer activities, such as drib-
bling, di昀昀erent types of passes, and automatic left and right foot recognition using two IMUs
embedded in the sole of a soccer shoe, this work implemented both a CNN and a CNN-LSTM
model. Compared to traditional ML approaches, these DL models bypass manual, subjective,
and time-consuming feature extraction processes, as they can autonomously learn relevant fea-
tures [Cup22]. For this reason, DL approaches are increasingly utilized in HAR tasks, and their
application is expanding into sports contexts like soccer [Cup22]. However, despite showing
promising results in classifying soccer activities, many DL approaches still focus on general
actions and make limited use of real game data, which restricts their practical applicability [Sto21].
Therefore, this work aimed to develop a DL approach capable of recognizing these more spe-
ci昀椀c soccer activities, as well as automatic left and right foot recognition. The main objectives were:

i) Can deep learning algorithms classify activity metrics in soccer?
ii) Can the analyzed algorithms continue to recognize the metrics even in game-like situations?

The following discussion reviews this thesis’s 昀椀ndings, focusing on the preprocessing and seg-
mentation steps, the choice of model architecture and its comparison with existing literature,
hyperparameter optimization, and model performance results. Additionally, the applicability of
the models in real-game scenarios is addressed.
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6.1 Preprocessing and Segmentation

The preprocessing pipeline closely follows the methodologies introduced by Stoeve and colleagues
[Sto21] as well as Cuperman and colleagues [Cup22], though several enhancements were incorpo-
rated to suit the speci昀椀c requirements of our model better.
The de昀椀nition of the null class was extended to improve the robustness of the model and its
applicability in real-life game scenarios. In contrast to Stoeve and colleagues, who restricted
their null class to “none”, “light contacts” and “strong contacts”, the null class of this model
includes additional categories such as “ambiguous contact”, “ambiguous short pass”, “ambiguous
range pass”, and “juggling kicks”. Therefore, in this study, the null class is de昀椀ned to include
activities that are considered irrelevant to the speci昀椀c classi昀椀cation objectives. By assigning these
ambiguous actions to the null class, the model avoids misinterpreting ambiguous activities as
speci昀椀c well-de昀椀ned movements, such as ambiguous passes. This approach ensures a clear focus
on the relevant, unambiguous action classes. Nevertheless, ambiguous shots were intentionally
included in the relevant classes to gain insight into how the model handles such uncertain activities.
By encompassing a wider variety of movement types, the model gains robustness and accuracy in
the dynamic context of real games, improving its generalization capability.
To di昀昀erentiate relevant from non-relevant events, Cuperman and colleagues used a threshold-
based approach to 昀椀lter out non-relevant events before passing them to the model, thereby reducing
computational costs [Cup22]. However, this method has limitations, especially for subtle actions
like dribbling. These actions can be challenging to distinguish from non-relevant ones, such as
running, as they often involve light ball interactions that result in only small peaks in the sensor
data. As a result, basic thresholding may struggle to consistently capture these 昀椀ner ball touches
that occur during dribbling.
In future work, an initial, simpli昀椀ed ML or DL model could be added to distinguish high-intensity
from low-intensity activities. This extra layer could e昀昀ectively 昀椀lter out low-impact events while
retaining high-impact ones, resulting in improved precision compared to a simple threshold ap-
proach. Further event detection methods should be explored in the future.

As described in Chapter 4.3, a peak detection method similar to that of Stoeve and colleagues to
identify potential events was used [Sto21]. However, this method was adjusted for our speci昀椀c
application by optimizing the parameters min_dist, tresh_abs, and fcut. The data used for opti-
mization was excluded from further analysis for optimization. By omitting these data points, the
model remains robust and can generalize to new data due to an objective assessment.
The peak detection algorithm was further optimized for sensitivity. Stoeve and colleagues set
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a sensitivity threshold of 100 % for the train set, aiming to ensure that no single event goes
undetected [Sto21]. This is appropriate for the isolated detection of shots and passes, as these are
distinguishable from other events due to prominent peaks in the signal. In our case, the average
sensitivity for peak detection optimization was 91 % for the selected data as described in Chapter
4.1.2. Additionally, we set limits on the parameter ranges for min_dist and tresh_abs to prevent
overly small parameter values. The optimized peak detection was further tested on the entire test
set, achieving an accuracy of 89.54 %, indicating an appropriate event detection. The undetected
events are light ball contacts with minimal amplitude, which are not critical for detecting actual
dribbling actions, as a light touch of the ball alone, by our de昀椀nition, does not constitute dribbling.
Stoeve and colleagues used parameter values of min_dist = 300 samples, tresh_abs = 0.3,
and fcut = 20 Hz [Sto21]. In contrast, our parameters are set to min_dist = 100 samples,
tresh_abs = 0.1, and fcut = 22.7 Hz. These di昀昀erences are reasonable considering our analysis
includes dribbling, which has a smaller minimum distance between events according to Stoeve
and colleagues [Sto21]. This also aligns with the lower tresh_abs, as dribbling contacts typically
produce smaller amplitude peaks in the signal than shots or passes.
The slightly higher cuto昀昀 frequency fcut is due to our aim of capturing faster, higher-frequency
peaks, as seen in dribbling. A high-pass 昀椀lter with a higher cuto昀昀 frequency supports this objective
by allowing high-frequency peaks to pass through more e昀昀ectively, making relevant dribbling
events more clearly visible in the signal.

To balance the dataset, Stoeve and colleagues, as well as Cuperman and colleagues, both used un-
dersampling methods [Sto21; Cup22]. Given the greater class imbalance in our dataset due to 昀椀ner
class distinctions, a combined approach of random undersampling and ADASYN oversampling
was applied to improve balance and maintain su昀케cient sample size for underrepresented classes.
By applying random undersampling, many samples from the null class are removed, while
ADASYN synthesizes new instances for underrepresented classes without merely duplicating
them. This method has shown promising results in similar applications , as it generates more
varied synthetic samples, which can help the model capture 昀椀ner-grained patterns in complex
actions such as ambiguous shots, short passes, and long passes [Lar23].
While ADASYN is e昀昀ective in creating instances for less frequent classes, a potential limitation is
verifying the realism of the generated data, particularly for 昀椀ne-grained distinctions like speci昀椀c
types of passes or shots. To mitigate this risk, the synthetic data are used strictly in model training,
leaving the test set una昀昀ected.
In conclusion, the combined undersampling and ADASYN approach is well-suited to the demands



58 CHAPTER 6. DISCUSSION

of this study, as it enables the model to learn essential features from a more balanced dataset
while maintaining class variability. Future work could bene昀椀t from collecting additional data for
underrepresented classes, as real data would reduce the need for synthetic sampling and further
enhance model robustness.

6.2 Choice of Model Architecture

Looking at the architecture results of our two models, the CNN, with a weighted F1 score of 92.5 %
for event and 97.8 % for foot classi昀椀cation, outperformed the CNN-LSTM, which achieved 90.1 %
for event and 96.3 % for foot detection. Both models have the same classi昀椀cation behaviour, for
instance, they both recognize the short pass medial better than the short pass other. This suggests
that the CNN-LSTM does not o昀昀er a distinct advantage over the standalone CNN. However, it
should be noted that, since the event windows were treated as independent and the cell state was
neither retained nor initialized for the next sequence, only short-term dependencies were analyzed.
For future research, it would be interesting also to consider long-term dependencies.
An interesting 昀椀nding is that, during hyperparameter optimization, the CNN components in both
models delivered very similar results. Both models achieved optimal performance with four convo-
lutional blocks, no dense dropout at the end, a kernel size of 昀椀ve, and nearly identical 昀椀lter counts
(112 for the CNN and 114 for the CNN-LSTM). This suggests that the data processing in the CNN
part of each model might be nearly identical, with the LSTM component in the CNN-LSTM likely
responsible for the slight performance drop. Furthermore, the CNN-LSTM requires a much higher
number of trainable parameters, reaching 828,840 compared to CNN’s 210,792. This substantial
di昀昀erence, almost four times more, is associated with longer runtime.
Considering both the higher runtime and lower performance, the CNN is the more suitable
choice for practical applications or future product integration, as it allows for faster and safer
activity recognition.
While the current approach has yielded good results, there is still room for improvement. Ex-
ploring di昀昀erent ways to capture time-dependent patterns could provide valuable bene昀椀ts for
accurately classifying activities in dynamic sports like soccer. Therefore, other models like Time
Convolutional Networks (TCNs) with attention mechanisms should be explored in the future, as
they are more e昀昀ective at understanding time-dependent patterns and adapting their receptive
昀椀eld 昀氀exibly. Additionally, the use of attention allows these models to assign higher weights
to important features, which can enhance overall model performance [Wei24]. This approach
has already demonstrated improved results in the 昀椀eld of HAR in soccer image processing tasks
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[Wan23; Mou24] but also with IMU data [Wei24].
Additionally, Bijalwan and colleagues recently introduced a multi-modal fusion model approach
for HAR using IMUs, which synergistically integrates TCNs, CNNs, and LSTMs. Each network
leverages its unique strengths: TCNs capture temporal dependencies, CNNs extract local features,
and LSTMs manage sequential information. This combined approach outperforms the individual
models in both accuracy and F1 score, highlighting the advantages of integrating these architec-
tures [Bij24]. In the next step, this type of architecture could be applied to our dataset to achieve
even better classi昀椀cation results.

6.3 Model Comparison to Existing Literature

Our CNN achieved a weighted F1 score of 92.54 % whereas the CNN-LSTM reached a weighted
F1 score of 87.54 %. As already mentioned in Chapter 4.4, our model selection was in昀氀uenced by
the results of Stoeve and colleagues and Cuperman and colleagues [Sto21; Cup22].
Cuperman and colleagues achieved an average accuracy of 97.53 % with their CNN-LSTM model
and 98.08 % with their CNN model. This shows that the CNN performed slightly better than the
CNN-LSTM in their study. Nevertheless, it should be noted that for both approaches, the CNN
model was based on a combination of di昀昀erent sub-networks, where the sensors were processed
di昀昀erently through various 昀椀lter con昀椀gurations (either using di昀昀erent 昀椀lters for each sensor, the
same 昀椀lters for all sensors, or across all sensors at once), and the extracted feature maps from all
sub-networks were concatenated at the end [Cup22]. Although a direct comparison of the results
is not possible due to the di昀昀erent dataset, this similarity in architecture, particularly the number
of convolutional layers, indicates that our model has a robust structure that can achieve strong
performance. Nevertheless, this fusion approach resulted in a more complex model architecture
compared to ours. This also shows that multi-modal fusion architectures can be promising for the
future [Bij24].
Stoeve and colleagues achieved a strong performance with a weighted F1 score of 92.8 % for
their CNN model [Sto21]. Their model consists of three convolutional layers, each followed by a
max pooling layer, with the last two layers also including dropout. This architecture is broadly
similar to mine, and since the dataset is the same, this makes the comparison more relevant.
Notably, Stoeve’s model uses only three convolutional layers, while we found four to be optimal.
Additionally, in our model, we use max pooling only after the 昀椀rst convolutional layer and apply
both dropout and max pooling for all subsequent layers, making the results even more comparable.
This suggests that 昀椀ner granularity requires a more complex model structure to capture subtle
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di昀昀erences e昀昀ectively. Consequently, Stoeve’s model had only 111,763 trainable parameters, while
ours had nearly doubled at 210,792, indicating a higher computational load.

6.4 Hyperparameter Optimization
To 昀椀nd the best hyperparameters, Stoeve and colleagues and Cuperman and colleagues also
conducted hyperparameter optimization, both using 5-fold cross-validation [Sto21; Cup22]. In
contrast, in this work, a 5-fold strati昀椀ed cross-validation was applied.
Strati昀椀cation plays a crucial role here, as it not only enhances the comparability of validation results
across folds but also provides a more accurate assessment of model performance by evaluating
on a distribution that re昀氀ects the ”real-world” class balance. Additionally, for highly imbalanced
datasets, strati昀椀cation helps ensure that each fold contains instances of all classes, avoiding cases
where a fold might lack representation for one or more classes entirely.
Unlike Stoeve and colleagues, we optimized with only 100 trials instead of 500 [Sto21]. In the
future, further optimization could be explored for our 昀椀xed parameters, such as increasing the
number of trials and extending the maximum number of epochs, as early stopping was not always
triggered, suggesting that additional training could be bene昀椀cial.

6.5 Outcomes of Event Classi昀椀cation
The 昀椀ne di昀昀erentiation between events works well for both models, as shown in Chapter 5. The
CNN achieved thereby a weighted F1 score of 92.54 %. Since both models exhibit similar
behaviours, we will now address both models simultaneously. Although the classi昀椀cation generally
performs well, some classes yield better results than others. Relevant actions are distinguishable
from those categorized as null class, which represent non-relevant actions. The null class is most
often confused with dribbling contacts, likely because these ball contacts are usually very light,
resulting in only slight signal amplitude variations.
Within the passing classes, it is notable that short pass medial and short pass other are frequently
misclassi昀椀ed as each other. In general, short pass medial is more often correctly recognized, while
short pass other is often mislabeled as short pass medial. Although this may seem unexpected
at 昀椀rst due to the di昀昀erent contact points on the foot, it is important to note that the class short
pass other is broadly de昀椀ned and includes any part of the foot that comes into contact with the
ball except the medial side. This broad de昀椀nition makes it di昀케cult to identify unique features
accurately representing this class. Nonetheless, both actions have the same goal: to pass the ball
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to a teammate over a short distance. Consequently, while foot positioning may vary slightly, the
intensity, or signal amplitude, is very similar due to the short distance, complicating di昀昀erentiation.
Additionally, the angle at which the foot strikes the ball can vary in short passes, regardless of
which part of the foot makes contact with the ball [Lee10]. It is also challenging for the labeller
to determine exactly which part of the foot made contact, especially during real game sessions
where multiple players are on the 昀椀eld, making it di昀케cult to observe each detail precisely. Another
observation is that long passes are rarely classi昀椀ed correctly and are most often confused with
either shots or short pass medial. This is because a long pass may resemble a shot in force if it’s
harder, or a short pass if it’s softer. Additionally, the similar motion in long passes, short passes,
and shots contributes to these confusions. Explainable AI methods could be explored in the future
to gain deeper insights into the decision-making process of the models, thereby providing a clearer
understanding of the factors that contribute to misclassi昀椀cation [Pro23].
As discussed in Chapter 6.2, incorporating an attention mechanism could be bene昀椀cial, as it is
often used to emphasize certain parts of a sequence and assign them more weight [Wei24]. This
might place more emphasis on the moments leading up to the critical motion phases, such as just
before ball contact, thereby allowing for better distinctions. Ambiguous shots are particularly
challenging to di昀昀erentiate due to their subjective assignments. In many cases, a shooting motion
is present in this class, but the ball may not be fully touched, or unusual types of shooting motions
are performed. It was expected that the shooting motion could be detected by the DL model
through the rapid acceleration of the leg, even if it did not result in a pronounced peak in the
IMU signal due to no ball contact. This signal pattern could indicate a shot, but the amplitude
does not, making it ambiguous. Ultimately, the classi昀椀cation of such events strongly depends
on the labeller’s interpretation of whether it is a clear shot or whether the action 昀椀ts into the
ambiguous class.

6.6 Outcomes of Event Leg Classi昀椀cation

The distinction between the left and right foot works very well, with an achieved weighted F1
score of 97.83 % by the CNN. As shown in Figure 4.4, where the execution of a long pass is
demonstrated for both left and right feet, the acceleration and gyroscope data appear horizontally
mirrored. This makes it quite easy for the model to di昀昀erentiate between left and right foot actions,
as the movements are fundamentally similar. This reliable distinction can be used to gain valuable
insights into player performance, such as how often a player uses one foot compared to the other.
Based on this information, training can be adjusted to focus more on the less frequently used foot.
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Furthermore, future activity recognition could incorporate the analysis of the non-dominant leg.
Although this leg does not directly perform actions, such as during a shot, it might still provide
valuable additional insights. Research should be conducted to explore the potential bene昀椀ts of
including this data from the supporting leg.

6.7 High-Level Class Comparison
Although the primary aim of this work was to gain deeper insights into more speci昀椀c soccer
activities, the general identi昀椀cation of null, pass, and shot events remains of interest. Summarizing
the events in higher-level classes allows us to compare the results with those of Stoeve and
colleagues. Overall, the 昀椀ndings are closely aligned with those of Stoeve and colleagues, who
reported an average performance of 90 % for the null class, 77 % for the pass class, and 75 % for
the shot class [Sto21]. In comparison, our results showed similar average performances: 94 % for
the null class, 71 % for the pass class, and 70 % for the shot class (ambiguous shots excluded).
Even if the performance scores are slightly di昀昀erent, the more detailed class breakdown does not
change the general challenges in distinguishing between null, pass, and shot actions. In summary,
the null class remains highly recognizable and distinguishable from the others, likely because
it includes easily recognizable actions like jogging or running. The pass class is also clearly
separable from the null class, but the models struggle to distinguish it from the shot class, leading
to frequent misclassi昀椀cations. The shot class, in turn, is easily distinguished from both the null
and pass classes, except for long passes. Long passes are misclassi昀椀ed as shots in 42 % of cases
for our CNN-LSTM model and 36 % for our CNN model, likely due to the similar technique and
force involved in long passes and shots [Lev98].

6.8 Real Game Applicability
The goal was to ensure that the activities could also be reliably detected in real-game scenarios. A
key consideration here is the real-game applicability of these setups. Our setup is designed to have
minimal impact on the player, using only two IMUs to enable more practical, product-oriented
applications in real sports settings. While many studies have employed con昀椀gurations with multiple
IMUs attached to various parts of the body, such setups may be less practical for in-game tracking,
as players are unlikely to wear multiple sensors during training or competition without impacting
their movement [Cup22; Hos17; Lar23].
Additionally, as shown in the confusion matrices of both models in Chapter 5.3.1 and Chapter
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5.3.2, performance on the lab data is better than on the real game data. This was expected, as
actions in the lab setting are less complex, movements are more regular, and events are thus easier
to separate. Additionally, there is no opponent interaction as in real games, which further reduces
complexity in the lab environment [Sto21]. The impact of opponents could be further explored in
the future.
Although the weighted F1 score for the lab data set is slightly lower (86.54 %) compared to the
real game data set (91.43 %) as achieved by the CNN, this di昀昀erence can be attributed to the
varying instance counts across classes. For example, the real game test dataset contains about
ten times more instances of the null class than the laboratory test dataset, arti昀椀cially boosting
the weighted F1 score. However, if we examine the recognition rates of the individual classes
through the confusion matrices, performance is indeed better in the laboratory setting compared
to the real game setting. This is also highlighted by the balanced accuracy metric, which gives
equal weight to each class regardless of its frequency. Classes with fewer instances, such as pass
and shot, are equally considered in the evaluation. As seen in Tables 5.3 and 5.5, the balanced
accuracy is higher for lab data, indicating a better classi昀椀cation performance of the model under
lab conditions.
In summary, although the model’s performance is lower on real game data, the weighted F1 score
indicates that it can still reliably classify actions under real-world conditions. Both the lab and real
game data play a crucial role: lab data enables the model to learn the movements more precisely,
while real game data re昀氀ects the complexity of actual gameplay.
To further improve classi昀椀cation performance, additional data should be collected in both lab and
real game environments. Especially for classes with fewer instances, the model’s performance
decreased, as seen with ambiguous shots or long passes. Consequently, with additional data, the
model could potentially learn the class-speci昀椀c features more e昀昀ectively. To achieve even higher
accuracy in classifying speci昀椀c events, especially since individual events like long passes do not
always achieve high accuracy, another promising approach would be to use transfer learning, as
it can accelerate model training and improve prediction accuracy [Mou24]. Transfer Learning
has already shown improvements in HAR based on wearable sensors and could therefore lead to
potential improvements for our task [Jia24; Gan24]. Another step could involve providing the
model with additional context data, such as the player’s position, age, and similar information.





Chapter 7

Conclusion

In this thesis, we investigated whether DL models can accurately identify soccer-speci昀椀c, 昀椀ne-
grained events, such as dribbling, types of passes, types of shots, and left and right foot recognition,
using only two IMUs embedded in the soles of each soccer shoe. Additionally, we explored
whether these DL models could recognize these events in game-like situations.

The dataset included data from over 800 players. Compared to Stoeve and colleagues, this study
broadened the class de昀椀nitions, particularly for the null class, to encompass a wider range of real-
life actions [Sto21]. A peak detection algorithm, based on Schuldhaus [Sch19], was implemented
with optimized hyperparameters to detect and extract 昀椀ner events e昀昀ectively. To address the highly
imbalanced dataset, a class-balancing method was applied, which either randomly undersamples a
class or generates synthetic instances using ADASYN.
Two models, CNN and CNN-LSTM, were implemented and optimized through hyperparameter
tuning. The classi昀椀cation outcomes of these models were then analyzed in detail, focusing on
event classi昀椀cation and foot recognition performance. To provide a more comprehensive overview
of general performance, events were grouped into broader categories, such as null, pass, and
shot, making the results comparable with those of Stoeve and colleagues [Sto21]. To assess
real-game applicability, the test dataset was further divided into lab and real-game sessions for
detailed analysis.

The results of this thesis demonstrate that the proposed DL models can reliably identify most
soccer-speci昀椀c metrics. Challenges remain with the class long pass and class short passes other.
Both models showed strong performance, with the CNN achieving a weighted F1 score of 92.54 %
for event detection and 97.83 % for foot recognition, while the CNN-LSTM achieved a weighted F1
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score of 90.08 % for event detection and 96.27 % for foot recognition. Future work could explore
alternative model architectures, such as TCNs or multi-modal fusion architectures. Additionally,
attention mechanisms could be integrated to enhance performance further.
In terms of real-game applicability, the model performs better on lab data but handles real-game
data similarly well. The higher weighted F1 score on real-game data compared to the labo-
ratory data suggests that the model e昀昀ectively handles the strong class imbalance present in
real-game scenarios.

In this work, a 昀椀rst step was taken towards classifying more speci昀椀c events to gain deeper insights
into player performance. This paves the way for more e昀昀ective training and improved player
analyses, even in real-game scenarios, as it enables training methods and game strategies to be
more individually tailored to the player. By understanding deeper aspects of player performance,
strengths and potential weaknesses can be better identi昀椀ed, allowing for more targeted improvement
plans for each player.
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Appendix A

Acronyms

ADASYN Adaptive Synthetic Sampling Approach

AI Arti昀椀cial Intelligence

ANN Arti昀椀cial Neural Network

CNN Convolutional Neural Network

COD Change of Direction

DFT Discrete Fourier Transformation

DL Deep Learning

DNN Deep Neural Network

DT Decision Tree

FC Fully Connected

GAN Generative Adversarial Network

GRU Gated Recurrent Units

HAR Human Activity Recognition

IMU Inertial Measurement Unit

k-NN k-Nearest Neighbour
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LSTM Long Short-Term Memory

ML Machine Learning

NB Naive Bayes

NN Neural Network

RBM Restricted Boltzmann Machine

ReLU Recti昀椀ed Linear Unit

RNN Recurrent Neural Network

SVM Support Vector Machine

TCN Time Convolutional Network

UEFA Union of European Football Associations

VAR Video Assistant Referee
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