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Übersicht

Benchmarking spielt eine entscheidende Rolle bei der Weiterentwicklung wissenschaftlicher
und technologischer Disziplinen, indem es standardisierte Methoden zur Bewertung und zum Ver-
gleich der Leistung verschiedener Algorithmen und Systeme bereitstellt. Es gewährleistet die Zu-
verlässigkeit, Reproduzierbarkeit und Transparenz von Ergebnissen, die für den wissenschaftlichen
Fortschritt und technologische Innovationen unerlässlich sind. Diese Bachelorarbeit konzentriert
sich auf die Bedeutung des Benchmarkings im Kontext der Messung der Herzfunktion und zielt
auf die Pre Ejection Period (PEP) ab.

Die PEP ist ein vielversprechender Marker für die Aktivität des sympathischen Nervensystems
mit großem Potenzial für klinische und Forschungsanwendungen. Dennoch wird seine breite
Nutzung durch den komplexen Messprozess und das Fehlen von Extraktionsalgorithmen, die auf
gängigen Datensätzen validiert sind, eingeschränkt. Diese Arbeit adressiert diese Herausforderun-
gen durch die Etablierung eines systematischen Benchmarks für PEP-Extraktionsalgorithmen
unter Verwendung kombinierter Elektrokardiagramm - und Impedanzkardiogramm -Signale.

Für die Studie wurden zwei unterschiedliche Datensätze herangezogen: ein Datensatz von
Teilnehmern während einer akuten Stressaufgabe (Trier Social Stress Test (TSST)) und deren
stressfreier Kontrollbedingung (Friendly Trier Social Stress Test (f-TSST)), sowie ein weiterer
Datensatz von Teilnehmern, die einer Tilt Table Test (TTT)-Untersuchung unterzogen wurden.
Diese Datensätze boten verschiedene Bedingungen für eine robuste Evaluierung der Algorith-
musleistung. Der Benchmark umfasste mehrere Methoden zur Detektion des Q-Wellen-Beginns
in Elektrokardiogramm-Signalen, welche den Startpunkt des PEP markieren, und des B-Punkts in
Impedanzkardiogramm-Signalen, der dem Endpunkt des PEP entspricht.

Insgesamt 11.768 manuell annotierte Markierungen dienten als Goldstandard, der einen um-
fassenden Vergleich der algorithmischen Leistung.

Für beide Datensätze lieferten unterschiedliche Algorithmuskombinationen die besten Ergeb-
nisse. Für den durch den TSST gewonnenen Datensatz zeigte die Kombination die beste Leistung,
bei der 40 ms vom R-Peak subtrahiert wurden, um den Q-Wellen-Beginn zu bestimmen, und lokale
Minima der zweiten Ableitung des first derivative of the cardiac impedance (dZ/dt)-Signals des
Impedanzkardiogramms zur Identifizierung des B-Punkts verwendet wurden. Hier betrug der
mittlere absolute Fehler 14,55 ms ± 19,20 ms. Für den zweiten Datensatz beinhaltete der beste
Ansatz, der einen mittleren absoluten Fehler von 18,41 ms ± 16.32 ms zeigte, die Subtraktion von
32 ms vom R-Peak und die Verwendung einer Methode, die den Punkt mit dem größten vertikalen
Abstand vom dZ/dt-Signal zu einer geraden Linie, die zwischen dem C-Punkt und dem Punkt 150
ms vor dem C-Punkt gezogen wurde, zur Bestimmung des B-Punkts identifizierte.
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Abstract

Benchmarking plays a crucial role in advancing scientific and technological fields by providing
standardized methods for evaluating and comparing the performance of various algorithms and
systems. It ensures the reliability, reproducibility, and transparency of results, which are essen-
tial for scientific progress and technological innovation. This bachelor’s thesis focuses on the
importance of benchmarking in the context of cardiac function measurement, targeting the PEP.

The PEP is a promising marker for Sympathetic Nervous System (SNS) activity, with high
potential for clinical and research applications. However, its complex measurement process and the
lack of extraction algorithms that are validated on common datasets hindered its widespread use.
This thesis addresses these challenges by establishing a systematic benchmark for PEP extraction
algorithms using combined Electrocardiogram (ECG) and Impedance cardiogram (ICG) signals.

The study utilized two distinct datasets: one from participants during an acute stress task
(Trier Social Stress Test (TSST)) and its stress-free control condition (Friendly Trier Social
Stress Test (f-TSST)), as well as one dataset from participants undergoing a TTT examination.
These datasets provided varied conditions for a robust evaluation of algorithm performance. The
benchmark involved multiple methods for detecting the Q-Wave onset in ECG signals, which
marks the start point of the PEP, and the B-Point in ICG signals, corresponding to the PEP end
point.

A total of 11,768 manual labeled annotations served as the gold standard, enabling a compre-
hensive comparison of algorithmic performance.

For both datasets, different algorithm combinations emerged as the best-performing. For the
dataset obtained through the TSST, the combination that showed the best performance, with a
Mean Absolute Error (MAE) of 14.55 ms ± 19.20 ms, involved subtracting 40 ms from the R-Peak
to determine the Q-Wave onset and using local minima of the second derivative of the dZ/dt signal
of the ICG for identifying the B-Point. For the second dataset, the best approach, which showed a
MAE of 18.41 ms ± 16.32 ms, involved subtracting 32 ms from the R-Peak and utilizing a method
that identifies the point with the greatest vertical distance from the dZ/dt signal to a straight line
drawn between the C-point and the point 150 ms before the C-Point for determining the B-Point.
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Chapter 1

Introduction

As the world becomes increasingly interconnected, the prominence of open science continues to
rise. By providing open access to research information and results, open science fosters repro-
ducibility and facilitates the verification of results. Furthermore, this approach allows a broader
and more diverse group of people to contribute to scientific discourse, enriching various fields
with fresh perspectives and innovative ideas [Sto10; Bor12; Gen23]. In the field of data science,
an application scenario of this can be found in the identification of the most efficient and effective
algorithm for a specific problem, for which the objective comparison of algorithms is indispensable.
This requires well-defined challenges, known as “benchmarks”, which consist of standardized
datasets and consistent evaluation strategies. These benchmarks allow for the assessment of
algorithm performance against common standards [Vol23]. Benchmarking has already been
successfully established in a variety of topics, such as sensor-based gait analysis [Küd24] or ECG
analysis [Str20].

One application scenario in which systematic benchmarking is missing so far is for the extrac-
tion of the Pre Ejection Period (PEP), a time period associated with cardiac function. Defined
as the time interval between ventricular depolarization and the onset of blood ejection, PEP
has been acknowledged as a promising indicator of the influence of the Sympathetic Nervous
System (SNS) on the heart rate [New79; Lar86]. This poses an advantage over conventional
Heart Rate Variability (HRV) metrics, which are typically influenced by both sympathetic and
parasympathetic activity. The PEP is usually measured using an ECG to extract the Q-Wave onset,
which corresponds to the beginning of the PEP, and an ICG to extract the B-point, corresponding
to the end of the PEP [For19].

Despite its potential as a promising and rather unbiased marker for sympathetic activity, the
PEP is not widely used in research, which is due to various aspects. First, the measurement setup
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is more complex compared to solely extracting HRV from ECG or Photoplethysmogram (PPG)
recordings, a task which wearable devices such as smartwatches or fitness trackers are already
capable of performing. Acquiring the ICG involves placing multiple electrodes on the body
to accurately detect impedance changes, which is more invasive and time-consuming than the
previously mentioned ECG or PPG recordings. Second, the extraction of both relevant points is
prone to error. Especially the B-Point detection has been proven to be particularly difficult due
to differences in the waveform between individuals, but also within the same person [Erm12].
This variation in waveform causes difficulties in accurately identifying the end point of the PEP in
both manual and automatic detection, leading to errors in determining the duration of the PEP in
both cases. This affects the ability to draw reliable conclusions and interpret the results, which
therefore results in limited usage.

Lastly, there is a lack of publicly available benchmark datasets on which algorithms for extract-
ing the fiducial points can be validated. PhysioNet is a research resource that provides free access to
a large and growing collection of physiological signals and clinical data for research in biomedical
engineering, computational biology, and medicine [Phy24d]. It also offers software tools and
algorithms for analyzing and processing physiological data across a variety of topics. The platform
includes a wide range of datasets, such as ECG recordings under different conditions (normal sinus
rhythm, arrhythmia databases, and long-term ECG data) [Phy24a], Electroencephalography (EEG)
data (including motor movements, imagery, and eye state recordings)[Phy24b], and respiratory
signals (including sleep studies and data from patients with chronic obstructive pulmonary dis-
ease) [Phy24c]. However, as of now, there are no published results for the extraction of the PEP
on PhysioNet, emphasizing the issue of missing datasets and research in this area.

The goal of this bachelor’s thesis is to address the last two issues by presenting the first
systematic benchmark for PEP extraction algorithms from combined ECG and ICG signals. This
approach integrates various methods for Q-Wave detection in ECG and B-Point detection in ICG
signals, alongside multiple Outlier Correction algorithms, using the tpcp Python library to create
comprehensive data science pipelines [Küd23]. Manually labeled data served as the gold standard
against which the results were evaluated. To achieve this, two distinct datasets were collected,
each employing individual study protocols and different measurement systems. One dataset
was gathered in a study under the EmpkinS collaborative research center, where participants
were exposed to acute psychosocial stress through the TSST as well as to a stress-free control
condition (f-TSST) since acute stress exposure activates the stress pathways in the body, including
an activation of the SNS, leading to changes in the PEP [Emp23]. The data of the other dataset
was obtained during a TTT examination performed by participants within the framework of the
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GUarded by Advanced Radar technology-based DIagnostics Applied in palliative and intensive
care Nursing (GUARDIAN) project at the Department of palliative Medicine of the University
Hospital Erlangen [Uni23]. Finally, the performances of the pipelines are evaluated separately for
each dataset by comparing them to the manually labeled events. Additionally, the differences in
algorithm performances between the two datasets were identified and analyzed.





Chapter 2

Related Work

2.1 Pre-Ejection Period as Marker for Sympathetic Activity

The Autonomic Nervous System (ANS) is composed of two main components: the SNS and the
Parasympathetic Nervous System (PNS), each having opposing effects on the body [McC07].
These systems operate continuously but with varying intensities depending on the situation, which
enables precise regulation of diverse bodily functions [McC07]. The SNS is responsible for trig-
gering “fight-or-flight” responses and is therefore prominent in stressful situations. To prepare the
body for such a situation, the blood flow is reallocated to maximize supply to the muscles [McC07].
Conversely, parasympathetic activity predominates in calm moments, facilitating relaxation and
energy conservation. As can be seen from the term “rest and digest”, which describes the physio-
logical state during parasympathetic activation, the PNS primarily supplies the digestive tract with
blood [McC07; Gib19]. The ANS influences various bodily functions, including heart rate, blood
pressure, metabolism, body temperature, and pupillary response [McC07; Gib19]. To maintain
balance within the body the SNS and PNS work antagonistically. For instance, the SNS dilates
the pupils to enhance vision and prepare for potential threats, whereas the PNS constricts the
pupils to reduce the amount of light entering the eyes in relaxed situations [Gib19]. Another
example is heart rate: the SNS increases heart rate, while the PNS decreases it [Gib19]. Due
to the simultaneous influence of both systems, it is challenging to determine the impact of only
one system on a specific bodily function [New79]. To measure and understand ANS activity,
various physiological parameters are used. A typical parameter is the Heart Rate (HR), which
is influenced by both the SNS and the PNS. Generally, the PNS has a stronger effect on the HR,
complicating efforts to measure only SNS activity [New79; Cac94]. Similarly, blood pressure (BP)
is regulated by both the SNS and the PNS, presenting the same challenge in isolating the effects of
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a single system [Gib19]. In contrast to these parameters, studies show that the PEP is influenced
only by the SNS [Cac94]. This makes PEP a reliable marker of sympathetic activity, superior
to typical parameters like HR [New79]. The term PEP describes the cardiological time period
between ventricular depolarization and the opening of the aortic valve, resulting in the onset of
blood ejection [Lar86].

The PEP plays a crucial role in stress research by examining the response of the ANS to
stress-inducing stimuli. Elevated stress levels are often associated with a shortened PEP, indicating
increased sympathetic activation [New79]. Furthermore, PEP serves as a valuable tool in the study
of anxiety disorders and other mental health conditions. Individuals with anxiety disorders often
exhibit increased sympathetic activity, reflected in shortened PEP times [Fu18]. This measure
can be used to quantify the physiological effects of anxiety and monitor its severity. In clinical
research and practice, PEP can also be used to investigate cardiovascular diseases. Shortened
PEP times have been linked to an increased likelihood of cardiovascular problems such as aortic
valve dysfunctions [New79]. Therefore the PEP duration can provide information for a variety of
applications.

To be able to determine the PEP, various algorithms have been proposed in related works.
Since the Q-Wave is not visible in the ECG of every person, there are approaches to use other
points that are easier to detect instead of the Q-Wave Onset as start point of the PEP. For example
Bernston et al. propose using the onset of the R-Peak as replacement [Ber04]. However, an
even simpler and more reliable detection is possible for the R-Peak itself. Therefore, Seery et al.
recommend its use as start point of the PEP to eliminate detection errors [See16]. Additionally,
there are algorithms that exploit the ease of detecting the R-Peak by subtracting a fixed time
interval from it to locate the position of the Q-Wave Onset [Lie13]. Regarding the B-Point, there
are some approaches that utilize the relationships between the degrees of derivatives to identify
significant points that indicate a possible morphology of the B-Point. These include the inflection
points of the second derivative and the maxima of the third derivative, which are each used in a
method by Debski et al [Deb93]. Additionally, algorithms based on only the dZ/dt signal and its
zero crossings or peaks have been implemented [For19]. All these methods are based on fixed
rules. To adapt the detection to the different waveforms of the dZ/dt signal, Forouzanfar et al.
developed an algorithm that consists of several steps to adapt the determination process to the
respective morphology of the signal [For19].
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2.2 Benchmarking and Comparison of Algorithms for
Biomedical Signal Processing

Benchmarking serves as a critical tool in the field of algorithmic evaluation, facilitating the
comparison and assessment of various algorithms designed to tackle a specific problem [Hot05].
This method allows to determine how effective various algorithms are by testing them against a set of
performance challenges (”benchmarks”) [Hot05]. Ensuring the reproducibility of benchmarking
results is crucial for their reliability and integrity [Pre95; Xia24]. Reproducibility embraces
the ability for independent parties to replicate and verify experimental findings, confirming
the reliability of the conclusions [Pre95]. To achieve this, unrestricted access in the sense of
open science to both research methodologies and outcomes is considered essential in related
studies [Xia24; Pre95]. This open access allows researchers to find and use the best approaches
for specific problems [Hot05; Vol23; Wan23].

Since algorithms may perform differently on various datasets, having a diverse and repre-
sentative data sample in benchmarking is very important [Hot05; Vol23]. Using benchmarking
methods and promoting transparency in research helps the field of algorithm evaluation to grow,
leading to new advancements in areas like computer vision, machine learning, and artificial intelli-
gence [Vol23].
In the context of this study, benchmarking serves as the fundamental basis for evaluating the
performance of various algorithms developed for automatic PEP detection.

Achievements in benchmarking have already been made in various fields of study. One notable
example is the Gaitmap project, which focuses on sensor-based gait analysis [Küd24]. As part
of the project, 20 algorithms were implemented tailored for the analysis of data obtained from
Inertial Measurement Units (IMU) [Küd24]. These algorithms have been compiled from several
sources in order to obtain the broadest possible portfolio of methods that can provide insights into
the complex dynamics of human gait from IMU data [Küd24]. Moreover, the Gaitmap project
goes beyond algorithm implementation by providing access to datasets containing gait-related
information. These datasets serve as resources for researchers, offering a diverse array of real-world
gait data that can be used for validation, testing and comparison purposes [Küd24]. Additionally,
the project offers a platform with benchmark challenges, fostering a collaborative environment
where researchers can showcase their algorithms and compete to achieve optimal performance. To
enable this, the platform is designed to accommodate the integration of new data [Küd24].

Another topic is ECG analysis, for which a benchmarking approach is given by the PTB-XL
dataset [Str20]. This dataset offers a vast library of ECG data, which includes a total of 21,837 ECG
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records from 18,885 patients, each lasting ten seconds [Str20]. In addition to the raw ECG data,
the PTB-XL dataset includes algorithms designed to identify the critical points and extract relevant
information from the ECG signals. These algorithms facilitate the detection of specific features,
such as the QRS complex [Str20]. The dataset’s diagnostic capabilities are further enhanced by its
classification system, which can categorize the ECG signals into one of 71 diagnostic categories.
These categories are organized hierarchically, allowing for both coarse and fine classifications
depending on the specific requirements of the analysis [Str20]. To enable the assessment of
diagnostic accuracy, each diagnosis label within the PTB-XL dataset is accompanied by a likelihood
score ranging from 15 to 100. These scores represent the probability of the diagnosis being correct,
with higher values indicating greater confidence in the diagnosis [Str20]. By offering both the
data and the accompanying diagnostic algorithms, it provides a robust foundation for developing
and benchmarking new models for automated ECG analysis. Researchers can use this dataset to
train machine learning algorithms, validate their performance, and compare their results against
established benchmarks. Additionally, there is the rPPG (remote Photoplethysmography) toolbox,
a comprehensive software package designed for the extraction and analysis of physiological signals,
specifically aimed at measuring heart rate and related metrics from video recordings [Lab24].
Utilizing advanced computer vision and signal processing techniques, the rPPG toolbox non-
invasively detects subtle color changes in human skin caused by blood flow, allowing for the
estimation of pulse waveforms without the need for physical contact with the subject.

Achievements regarding benchmarking have also been made in emotional analysis. The
Dataset for Emotion Analysis using Physiological Signals (DEAP) is a resource in the field of
affective computing and human emotion analysis [Koe12]. The dataset was created to study
human emotional responses to multimedia content, particularly music videos. DEAP is designed
to facilitate research in emotion recognition and analysis, providing a comprehensive dataset
for developing and testing algorithms that can interpret human emotions based on physiological
responses. Drawing inspiration from these projects, efforts are now done in this work to extend
benchmarking to the realm of PEP. To implement this, this work builds on a previous Bachelor’s
thesis, which focused on investigating the PEP as a potential stress marker [Stü23]. For this purpose,
algorithms for automatic event detection of both PEP start and end points were implemented and
their performance was tested and evaluated on one dataset. This approach was adopted and
expanded. The data was supplemented by a further dataset on which the algorithms were also
tested. Thus, the algorithms have been modified, making them applicable to multiple datasets
rather than being tailored to just one. For benchmarking purposes, everything was designed to
allow the easy addition of new datasets in the future.
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Methods

To compare the performances of the algorithms on different data, two datasets were used within this
work. One of these was recorded in the context of a study investigating the contactless measurement
of stress, its determinants, and consequences under the EmpkinS collaborative research center
at the EmpkinS Lab, where the participants performed the TSST and the f-TSST [Kur24]. For
the sake of simplicity this dataset will be referred as TSST Dataset in the following. The other
dataset was derived from a study, which was conducted in relation to the project GUARDIAN at
the Department of Palliative Medicine of the University Hospital Erlangen. From now on, this
dataset is called GUARDIAN Dataset. In addition to variations in study protocols, the two datasets
also employed different measurement systems.

3.1 Dataset Description

In the following section, the two datasets are described in more detail with respect to their study
populations and data acquisition.

3.1.1 TSST Dataset

The TSST Dataset was derived from 15 participants (9 female and 6 male), who were divided into
two groups: 7 in the sitting group and 8 in the standing group. Depending on the group assignment,
the TSST and f-TSST were performed either sitting or standing. The recruitment process took
place via mail, social media, flyer, and in person. The exclusion criteria included age below 18
or above 50 years, non-German native language, BMI lower than 18 or higher than 30, drug use,
as well as experience with a similar stress test. For participation, either 50 Euros or 5 subject
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hours, in the case of psychology students, were received. Table 3.1 shows the demographic and
anthropometric data of the participants divided by gender.

Table 3.1: Demographic and anthropometric data of the study participants for the TSST Dataset

Age [years] Height [cm] Weight [kg] BMI [kg m−2]

Female 24.41± 2.51 168.33 ± 5.50 59.44 ± 6.06 20.92 ± 1.14
Male 21.50 ± 1.61 180.83 ± 5.43 76.50 ± 10.69 23.35 ± 2.79

Total 23.07 ± 2.54 173.33 ± 8.21 66.27 ± 11.73 21.89± 2.30

Trier Social Stress Test (TSST)

The TSST is experimental gold standard to induce acute stress, by putting the participants in an
interview situation [All17]. In the study at the EmpkinS lab, the following protocol was followed to
record the data. The test consists of three main parts, each lasting five minutes. The first phase is the
preparation phase, during which the participants were instructed to take notes on their personality
and complete questionnaires. In the subsequent phase, known as the Talk phase, participants
were required to deliver a speech about their personality in front of a panel of two individuals
dressed in lab coats. This panel was of mixed gender, and the participants were instructed to
address only the person of the opposite gender, maintaining eye contact throughout. The panel
members were trained in advance to exhibit minimal emotional response and to interact with
participants solely using predetermined sentences. The final phase involved a mental arithmetic
task where the participants were asked to repeatedly subtract 17 from 2,043. If a mistake was
made, the participants had to start over from 2,043. A visualisation of the setup for the standing
and sitting group can be found in Figure 3.1. Breaks were implemented between the different
phases to provide calmer periods for radar measurements, as it was anticipated that participants
might move too much during the TSST for the radar to be effective. Additionally, there were breaks
at the halfway points of both the Talk and Math phases. During these breaks, the participants
were instructed to remain as still as possible. The temporal sequence of the TSST is graphically
represented in Figure 3.2.
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Figure 3.1: Setup of the TSST for standing (a) and sitting (b) group

Friendly Trier Social Stress Test (f-TSST)

For a control condition the participants of TSST Dataset performed the f-TSST, a friendlier version
of the TSST, either a day before or after the TSST. The overall time schedule remained unchanged,
but the environment was made more pleasant. In this version, the panel members wore casual
clothes instead of lab coats, and both panel members were allowed to engage in conversation with
the participant. Moreover they were instructed to respond in a friendly and affirmative manner. In
addition, the math problem was simplified in the form that 10 and 20 had to be added alternately.
Within this dataset, all participants underwent every phase of both the TSST and the f-TSST. Ta-
ble 3.2 provides the mean duration of the recording length for each phase, categorized by condition.

Figure 3.2: Temporal sequence of the (f-) TSST
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Table 3.2: Mean duration recordings per phase divided into conditions for the TSST Dataset

Mean duration [min:sec]

TSST

Prep 09:21 ± 04:48
Pause_1 01:51 ± 00:49

Talk 09:25 ± 04:56
Math 09:34 ± 04:54

Pause_5 01:51 ± 00:49

f-TSST

Prep 08:09 ± 04:31
Pause_1 01:41 ± 00:50

Talk 08:06 ± 04:49
Math 08:07 ± 04:38

Pause_5 01:42 ± 00:50
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3.1.2 GUARDIAN Dataset

The GUARDIAN Dataset includes data from 24 participants (12 female and 12 male). An overview
of the composition regarding age, height, weight, and BMI can be found in Table 3.3.

The age range of the participants of GUARDIAN Dataset is larger than that of TSST Dataset,
especially regarding females, which is also reflected in larger standard deviations of all other values
of this subset.

Table 3.3: Demographic and anthropometric data of the study participants for the GUARDIAN
Dataset

Age [years] Height [cm] Weight [kg] BMI [kg m−2]

Female 35.67± 13.21 169.67 ± 8.00 68.75 ± 15.16 23.72± 4.04
Male 26.75 ± 4.23 183.42± 7.30 80.00± 10.23 23.76± 2.82

Total 31.21± 10.91 172.79± 10.65 73.96± 13.41 22.83± 4.03

Tilt Table Test (TTT)

To obtain the GUARDIAN Dataset the participants performed the TTT within the framework of
the GUARDIAN-Project. The TTT is a non-invasive clinical examination to induce orthostatic
stress and is commonly used to examine the causes for syncope [Teo16]. This test involves securing
the patient on a tilt couch and moving them to an upright position, which causes blood to flow
into the lower extremities and causes a decreased blood volume in the upper body, leading to a
drop in blood pressure [Zys24; San13]. While this blood pressure drop is quickly compensated in
healthy individuals by vasoconstriction of lower body vessels, this condition can lead to orthostatic
hypotension and even to syncope if the blood pressure regulation fails [Zys24]. Figure 3.3 shows a
schematic representation of the setup of a TTT.

In the course of collecting the data used in this Bachelor’s thesis, the test persons first went
through a resting phase, followed by a Valsalva maneuver, and Apnea phase, and the actual Tilt-
Up/Tilt-Down maneuvers of the TTT. During the resting phase, the participants were instructed
to lay relaxed, allowing for the measurement of baseline vital parameters. In the subsequent phase,
the Valsalva maneuver was performed several times in succession, during which an exhalation
is performed against closed airways [Pst16]. The back pressure of the inhaled air increases the
intrathoracic pressure inside the body, which leads to a drop in blood pressure. The Valsalva
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Figure 3.3: Schematic representation of the setup of a TTT [Ban24]

maneuver is therefore a valuable tool for assessing cardiovascular function and diagnosing heart
problems, as it tests the body’s ability to respond to sudden changes in intrathoracic pressure
[Pst16; Sri24]. During the Apnea phase, the participants repeatedly held their breath. In contrast
to the Valsalva maneuver, no pressure is generated by forced exhalation. Not every phase was
performed by all participants. The number of people that performed each phase, as well as the
mean duration with associated standard deviation, is described in Table 3.4.

Table 3.4: Mean duration of recordings and quantity of participants per phase for the GUARDIAN
Dataset

Number participants Mean duration [min:sec]

Resting 22 12:59 ± 03:28
Valsalva 22 19:03 ± 01:11
Apnea 22 06:54 ± 01:55
TiltUp 21 15:37 ± 05:27
TiltDown 22 11:48 ± 00:39
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3.2 Measurements

Both ECG and ICG signals were recorded in order to obtain the data for both datasets. These two
measurement modalities are described below. For data acquisition of the TSST Dataset the Biopac
MP160 system along with the AcqKnowledge software package was used for both ECG and ICG
measurement [BIO24]. A sampling rate of 1,000 Hz was chosen. For the GUARDIAN Dataset
the Task Force Monitor was used for the data monitoring [Wil18; CNS24].

3.2.1 Electrocardiogram (ECG)

The ECG is a measure of the electrical activity of the heart [Sat24; AL-15]. This non-invasive
technique uses electrodes on the body surface to measure electrical impulses that precede and
trigger the contraction of the heart [AL-15]. The characteristic waveform of an ECG consists of six
main components: P, Q, R, S, T and U-wave [Dou24]. The P wave is triggered by depolarization
of the muscle cells in the atrium [Bec06; Sat24]. The subsequent depolarization of the cardiac
interventricular septum is reflected in the ECG in the form of the onset of the Q wave [Win16].
The depolarization spreads to the ventricles and Purkinje fibers during the R and S waves [Win16].
The cause of the U-wave, which is not always visible, is not yet fully understood [Gir05]. A
visualization of a typical ECG-waveform with all relevant points and intervals marked is displayed
in Figure 3.4.

Figure 3.4: Schematic illustration of a ECG waveform with relevant points and intervals (modified
from [Dou24])



16 CHAPTER 3. METHODS

In both datasets, the ECG was acquired according to Lead II of Einthovens’s triangle [Ein12].
In terms of PEP calculation, the Q-Wave onset plays a crucial role as the starting point of this
cardiological time period. However, since the definition of this point is vague and the Q-Wave
Onset is not visible for every patient, its use is questionable [See16].

3.2.2 Impedance cardiogram (ICG)

While an ECG provides information about the start of the PEP, it can not capture the mechanical
beginning of the blood ejection from the ventricles, which is necessary as end point for PEP
computation [She90; Pil23]. To detect this point an ICG can be used [She90]. This non-invasive
method is based on the relation between blood flow in the aorta and the resistance to electrical
current in the thorax [Wan06]. By measuring this resistance, or impedance, and applying Ohm’s
law, which relates impedance (Z), voltage (U), and current (I), blood flow can be inferred [Wan06].
To measure the impedance, electrodes are placed on the body surface. These electrodes are divided
into two groups: current electrodes, which apply a high-frequency, low-amplitude alternating
current, and voltage electrodes, which measure the resulting voltage change [Wan06; Man18].
For data recording in this study, four electrodes were placed on the neck and the lower part of the
chest [She90]. On both the neck and the chest, one voltage and one current electrode are placed
on top of each other per side of the body [She90]. The voltage electrodes are positioned medial at
a distance of 5 cm from the current electrodes [She90]. Figure 3.5 shows a visual representation
of the electrode placement.

Figure 3.5: Overview of electrode placement for ICG measurement (modified from [Ste23])
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Before processing the ICG signal, the first step is typically to compute the first derivative
by time dZ/dt, which reflects the change of the thoracic impedance. Similar to the ECG signal,
the dZ/dt waveform has characteristic points, which can be automatically detected (Figure 3.6)
[Lab70]. Prominent points are A, B, C, X and O point. A marks the start of electromechanical
systole caused by contraction of the atrium [Man18]. The time point of the aortic valve opening
resulting in start of blood ejection can be observes at the point marked with B. The peak of the
dZ/dt signal is represented by the C point and is created by ventricular contraction [Man18]. At
the closure of the aortic valve the X-Point can be seen in the signal[Man18]. Lastly, the point O is
associated with opening of the mitral valve and the resulting change of volume [Man18].

The most relevant point in an ICG regarding PEP calculating is the B-Point, as it reflects the
aortic valve opening, which corresponds to the end of the PEP [She90; Man18]. Unfortunately,
the B-Point is challenging to detect as it can be located at any point during the ascending slope
between the A-Point and the C-Point [Man18; She90]. Figure 3.6 shows the waveform of dZ/dt
signal of the ICG with the described points marked.

Figure 3.6: Schematic illustration of a dZ/dt waveform with relevant points (modified from
[Ulb14])
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3.3 Fiducial Point Detection Algorithms

An overview of all the algorithms concerning Q-Wave onset and B-Point detection as well as
Outlier Correction mentioned in this section can be found in Figure 3.7.

Figure 3.7: Overview of the systematic PEP benchmarking approach in this thesis including all
employed algorithms. For comparison, pipelines for each combination of Q-Wave onset, B-Point
and Outlier Correction algorithms were build and evaluated against each other.

3.3.1 Preprocessing

To enable the detection of the relevant points for PEP computation the ECG and ICG signals were
cleaned in advance, since both signals are prone to baseline drifts, noise and artefacts [For19;
Chr04]. For this purpose the ecg_clean method with the biosppy method from the neurokit2
python package was applied to the ECG and a 4th order Butterworth bandpass filter with cutoff
frequencies of 0.5 Hz and 25 Hz was used for the ICG signal [For19; Mak21]. To ensure a
beat-to-beat PEP computation, the different heartbeats were segmented. For this purpose a method
developed by Sternemann et al., which is based on the heartbeat segmentation provided by the
neurokit2 library, was used [Mak21; Ste23]. This method uses the time interval between two
adjacent R-Peaks to determine the start and end points of a heartbeat [Ste23]. In contrast to the
method of the neurokit2 package, the heartbeat borders are set adaptively rather than by a fixed
heartbeat duration [Ste23; Mak21]. Figure 3.8 shows segments of raw ECG and ICG signals from
the GUARDIAN Dataset alongside the corresponding cleaned signals for comparison.



3.3. FIDUCIAL POINT DETECTION ALGORITHMS 19

Figure 3.8: ECG and ICG signal from the GUARDIAN Dataset before and after preprocessing

3.3.2 Q-Wave onset

In this work three different methods for determining the Q-Wave onset were compared regarding
their accuracy to detect the starting point of the PEP.

Algorithm that uses the Q-Peak as start point (QP)

Within this method, the Q-Peak is used to estimate the Q-Wave onset. Since the Q-Wave is not
visible in the ECG of every person, the onset of the R-Peak was used instead, as proposed in related
work [Ber04]. The onset of the R-Peak is always present, and it matches the Q-Peak when the
Q-Wave is visible. This makes the onset of the R-Peak a good choice for ensuring comparability
between all participants [Ber04]. For implementation, a method developed by Sternemann et
al. was used [Ste23]. This method utilizes the ecg_delineate function from the neurokit python
package to extract the Q-Peak. Within the ecg_delineate function, a discrete wavelet transform is
performed to identify the significant points of an ECG [Mak21]. As the R-Peaks are required for
this process and have already been determined during preprocessing, this step did not need to be
implemented separately. Figure 3.9 displays exemplary heartbeats with Q-Wave onsets labeled by
this algorithm. This algorithm will hereafter be represented by the abbreviation QP.



20 CHAPTER 3. METHODS

0 1000 2000 3000 4000 5000 6000
Time [ms]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

EC
G

 a
m

pl
itu

de
 [A

U
]

Q-Peak algorithm

ECG
Q-Wave onset

Figure 3.9: Labeled Q-Wave onsets using the QP algorithm

Algorithm that uses the R-Peak as start point (RP)

This algorithm follows the suggestion of previous work by Seery et al. to use the R-peak instead
of the Q-Wave onset as starting point of the PEP [See16]. This approach has the advantage that
the R-peak is the most significant point in the ECG and can therefore be determined with great
reliability [See16]. Some labeled points of this algorithm are provided in Figure 3.10. This method
will be referred as RP in the following.
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Figure 3.10: [Labeled Q-Wave onsets using the RP algorithm

Algorithm that subtracts 40 ms from the R-Peak to identify the start point (RP-40)

Based on the algorithm above, this approach uses the R-peak and subtracts a fixed time interval to
estimate the onset of the Q-Wave. Van Lien et al. determined 40 ms to be the most promising time
interval [Lie13]. However, in this thesis different time intervals ∆t, t ∈ [30, 32, 34, 36, 40]ms
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were used and compared. This method is based on the fact that the QR-interval of the ECG is
highly stable under all circumstances [Pil23]. The functionality of this method utilizing a time
interval of 40 ms is depicted graphically in Figure 3.11. For the sake of simplicity, these algorithms
are represented in the rest of this thesis by the abbreviations (RP-40,RP-32,RP-34,RP-36).
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Figure 3.11: Labeled Q-Wave onsets using the RP-40 algorithm

3.3.3 C-Point

In order to limit the search radius of the B-Point algorithms, the C-Point was used as the upper
time limit and was provided to the algorithms as a parameter. The algorithm used to determine the
C-Points is therefore explained beforehand. Like the R-Peak in the ECG, the C-Peak is the most
prominent point in the ICG and is mapped as global maximum within one heartbeat in the dZ/dt
signal. For C-Point detection, an algorithm implemented in a previous master thesis [Ste23] was
used. This algorithm is an adapted version of a peak-detection method of the scipy library [Vir20].
If multiple C-Points were detected, the algorithm selected the one closest to the average distance
between the previous three C-Points and their respective R-Peaks [Ste23].

3.3.4 B-Point

In the case of B-Point extraction, four different algorithms were implemented. In contrast to
the Q-Wave onset, the B-Point algorithms were given a parameter to determine whether Outlier
Correction should be performed afterwards.
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Algorithm that uses reversal points of the second derivative to identify the end point (SecDer)

This method is based on the fact that a reversal point of the second derivative corresponds to an
inflection point in the dZ/dt signal, which is a possible B-Point location [Árb17; Deb93]. Therefore,
all local minima in the second derivative of the cardiac impedance (dZ2/dt2) signal between the
R-Peak and the C-Point were identified. If several points were found, the point closest to the
C-Point was selected. In the case of Outlier Correction, for all heartbeats where a local minimum
could not be found, the R-Peak was chosen as the B-Point. The connection between the local
minima and the B-Points is illustrated in Figure 3.12. This approach will be referred to as SecDer
in the following.
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Figure 3.12: Labeled B-Points using the SecDer algorithm

Algorithm that uses local maxima of the third derivative to identify the end point (ThirDer)

This algorithm uses the third derivative of the ICG signal for B-Point extraction. From the third
derivative of the cardiac impedance (dZ3/dt3) signal, the local maximum was determined as this
point is equivalent to the point with the greatest change in slope in the dZ/dt signal, which is
another possible morphology in which the B-Point can occur [Árb17]. Following the instructions
by Arbol et al. [Árb17], the search interval was limited to 150 ms before the C-Point in order to
achieve the highest possible accuracy. Visually, this algorithm is demonstrated in Figure 3.13. For
this method, the abbreviation ThirDer will be used.
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Figure 3.13: Labeled B-Points using the ThirDer algorithm

Algorithm that uses the maximal distance to a straight line between the C-Point and 150 ms
before the C-Point to identify the end point (StrLin)

This approach uses the dZ/dt signal, in which a connecting line is drawn between the C-Point and
the point of the dZ/dt signal 150ms before [Dro22]. The point with the greatest vertical distance
to the line is then selected as the B-Point [Dro22]. The functionality of the algorithm is depicted
in Figure 3.14. This algorithm will be abbreviated as StrLin in the subsequent sections.

Figure 3.14: Labeled B-Points using the StrLin algorithm
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Algorithm that uses multiple conditions to identify the end point (MultCon)

For the last approach, an algorithm developed by Forouzanfar et al. has been implemented [For19].
This method employs a series of steps to refine the search interval, followed by specific decision
criteria, to identify the B-Point [For19]. The narrowing down of the search interval occurs in
three sequential steps. Firstly, the A-Point associated with the heartbeat is detected [For19].
Subsequently, all monotonically increasing segments between the A- and C-Point are selected
for further analysis [For19]. In contrast to the original implementation by Forouzanfar et al., the
segment of all the previously detected segments, that extended from at least half of the amplitude
of the C-Point to two-thirds of the amplitude was taken for further analysis [For19]. Therefore, the
definition for the C-Point amplitude as distance between the zero line and the C-Point was chosen
according to Sherwood et al. [She90].

Figure 3.15: Labeled B-Points using the MultCon algorithm

To identify the B-Point within the specified interval, all zero crossings and local maxima
of the dZ3/dt3 were determined, excluding those that didn’t meet specific limits [For19]. These
thresholds were set to 10 ·H/fs for the zero crossings and 4 ·H/fs for the local maxima, with H

being the difference in amplitude between the A- and C-point and fs representing the sampling
rate [For19]. All zero crossings that corresponded to a greater value in the dZ2/dt2 signal than the
defined threshold were excluded. Furthermore, all maxima with values below the threshold of
4 ·H/fs were also discarded. In the end, the B-Point was determined as either the zero point or
the local maximum, whichever is closest to the C-Point [For19]. If no point was detected with
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this method, the onset of the monotonically increasing interval was chosen [For19]. Additionally,
in cases requiring Outlier Correction, the R-Peak is designated as the B-Point. Using the R-Peak
ensures to achieve the highest possible number of B-Points, since its detection is very reliable. An
illustration of the described algorithm with the relevant features can be found in Figure 3.15. For
ease of reference, this approach will be called MultCon in the following.

Table 3.5 provides an overview of all the introduced abbreviations of the algorithms that will
be used in the following sections.

Table 3.5: Overview of abbreviations of the different Q-Wave onset algorithms, B-Point algorithms,
and Outlier Correction methods

Algorithm Type Description Abbreviation

Q-Wave Onset

Algorithm that uses the Q-Peak as start point QP

Algorithm that uses the R-Peak as start point RP

Algorithm that subtracts 32 ms from the R-Peak to
identify the start point

RP-32

Algorithm that subtracts 34 ms from the R-Peak to
identify the start point

RP-34

Algorithm that subtracts 36 ms from the R-Peak to
identify the start point

RP-36

Algorithm that subtracts 40 ms from the R-Peak to
identify the start point

RP-40

B-Point

Algorithm that uses reversal points of the second
derivative to identify the end point

SecDer

Algorithm that uses local maxima of the third deriva-
tive to identify the end point

ThirDer

Algorithm that uses the maximal distance to a straight
line between the C-Point and 150 ms before the C-Point
to identify the end point

StrLin

Algorithm that uses multiple conditions to identify the
end point

MultCon

Outlier Correction
Interpolation Intpol

Autoregression AutReg
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3.3.5 Outlier Detection

Before applying Outlier Correction, the outliers in the detected B-Points were detected. Following
the approach by Forouzanfar et al., the B-Point time data baseline, which was calculated by
applying a Butterworth low-pass filter with a cut-off frequency of 0.1 Hz in forward and backward
direction to the B-Point time values, were subtracted from the original B-Points first, which resulted
in stationarized B-Points [For19]. Afterwards, the distance between the C- and B-Points was
computed, as well as the median and median absolute deviation from the previously stationarized
points [For19]. Outliers were ultimately considered to be points that deviated from the median by
at least three median absolute deviations [For19].

3.3.6 Outlier-Correction

In this thesis, two different Outlier Correction algorithms were used, which will be described in
the following. For both approaches, the process of outlier detection followed by Outlier Correction
was repeated until no more outliers were found.

Interpolation (Intpol)

Within this work linear interpolation was used for correcting the B-Points marked as outliers.
The interpolate method from the pandas library was chosen for implementation [McK10]. This
method will be abbreviated with Intpol from now on.

Autoregression (AutReg)

As an alternative approach to Outlier Correction, an autoregressive model was used, as this
method has previously been shown to successfully reduce the number of B-Point outliers [For19].
Autoregressive models are usually used to estimate the future trend of data [Lüt05]. For the
B-Point Outlier Correction in this work, the principle of autoregression was applied in forward and
backward direction. Following Forouzanfar et al., the average of both calculations was taken as
the corrected point [For19]. To implement the autoregressive model the Autoregressive Integrated
Moving Average (ARIMA) model provided by the statsmodel library was used, with the parameters
integration and moving average set to zero, in order to solely obtain the autoregressive model
[Sea10; For19]. Burg’s method and the minimization of the Akaike information criterion (AIC)
were employed to determine the parameters and order of the forward and backward models. [Aka69;
For19]. Afterwards the baseline previously subtracted during the Outlier Detection (Section 3.3.5)
was re-added to the data [For19]. The abbreviation used for the autoregression method is AutReg.
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3.4 Manual Event Labeling

In order to obtain a gold standard against which the points found by the algorithms can be compared,
the relevant points for PEP calculation were manually labeled. Due to the large amount of data
available in both datasets, only parts of the data were labeled. Regarding TSST Dataset the ICG
and ECG data of the 15 participants were labeled within the phases Pause_1, Prep, Talk, Math and
Pause_ 5 for each of the two conditions TSST and f-TSST. The sections for labeling were selected
at random within the respective phases. For the phases Pause_1 and Pause_5, a 10-second section
was utilized, while for the remaining phases, the duration was 30 seconds. This results in a total
of 5,094 cardiac cycles that were manually labeled in this dataset. As for GUARDIAN Dataset
the data of 24 participants were labeled. For this purpose, a time interval of 60 seconds was also
randomly selected from each of the phases Resting, Valsalva, Apnea, TiltUp and TiltDown. The
dataset includes 6,927 cardiac cycles that were labeled by hand. The Python package MaD GUI
allows data to be visualized in a user interface, where pre-annotated labels can be displayed and
new labels can be set and saved [Oll22]. This package was used to produce the manually labeled
data.

Figure 3.16: Example of labeled ECG signal in the MaD GUI package

To faciliate the labeling process, the pre-processed signal (as described in Section 3.3.1) was
plotted together with the heartbeat borders which were also obtained from the preprocessing.
Afterwards, the Q-Wave onset was labeled in the ECG signal and the B-Point in the ICG signal,
respectively, according to the procedure explained below. Figure 3.16 exemplarily shows the
described labeling using the MaD GUI with an ECG signal. The loaded signal is displayed in the
MaD GUI, with the boundaries of heartbeats indicated by marker 1 and the onsets of Q-waves
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identified by marker 2. If no reliable point for the Q-Wave Onset or the B-Point could be determined,
this heartbeat was labeled as artefact. When excluding those heartbeats a total of 5,004 cardiac
cycles for the TSST Dataset and 6,764 for the GUARDIAN Dataset remained. This results in a
total of 11,768 cardiac cycles that can be used as a reference and on which algorithms can be tested.
A detailed breakdown of the numbers of labeled heartbeats excluding the artefacts is provided in
Table 3.6.

Table 3.6: Amount of manually labeled cardiac cycles per phase

Dataset Number
Participants Condition Phase Cardiac

Cycles

TSST Dataset 15

TSST

Prep 683
Pause_1 221

Talk 776
Math 764

Pause_5 207

f-TSST

Prep 612
Pause_1 219

Talk 664
Math 668

Pause_5 190

GUARDIAN Dataset 24 -

Resting 1,284
Valsalva 1,318
Apnea 1,377
Tilt Up 1,541

Tilt Down 1,244

Total 11,768

3.4.1 Q-Wave onset

Since the Q-Wave is not visible in the ECG of every person, the choice of the Q-Wave onset as
the starting point of the PEP leads to problems in terms of the comparability of results between
participants [She90]. For this reason, the R-onset was chosen as the starting point in this work,
based on related work based on previous work, as it was found to be more reliably to detect [Ber04;
See16]. The R-onset is defined as the abrupt change in gradient before the R-peak, which in the
case of an existing Q-Wave corresponds with its peak [See16]. To simplify the identification of
the points the preprocessed signal as described in Section 3.3.1 was used.
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3.4.2 B-Point

The detection of the B-Point is challenging due to the variation in its morphology [She90; For19].
In order to achieve the highest possible accuracy in determining the B-Points, the guidelines for
visual B-Point detection by Arbol et al. were followed, and the examples of difficult-to-identify
B-Points by Forouzanfar et al. were consulted [Árb17; For19]. Additionally, the R-Peak was used
as a reference point for the position of the B-Point as a lower limit, which is why the ECG was
additionally plotted together with the ICG when determining the B-Points (Figure 3.17. The ECG
signal is shown in red in the figure, and the ICG signal is in blue. Additionally, the heartbeat
borders (marked with 1) and the labeled B-Points (marked with 2) are visible.

Figure 3.17: Example of labeled ICG signal in the MaD GUI package

3.5 Evaluation

Utilizing the tpcp Python package, pipelines were created by combining all Q-Wave onset algo-
rithms and all B-Point algorithms, with the optional inclusion of one of the two Outlier Correction
methods [Küd23]. These pipelines were evaluated regarding their performance in determining
the PEP duration. Including the adapted variants of the RP-40 algorithm, a total of 72 algorithm
combinations were analyzed in this regard.

In addition to assessing the pipelines’ ability to accurately determine the PEP duration, the
Q-Wave onset and B-Point algorithms were individually evaluated for their precision in identifying
the respective points. The performance evaluation was conducted using the scoring implementation
of the tpcp library [Küd23]. To assess the performance, the following metrics were calculated
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based on the difference between the reference PEP values and the PEP values determined by the
algorithms: the Mean Absolute Error (MAE) (3.1) and Mean Error (ME) (3.2), each accompanied
by their standard deviation, and the Relative Error (RE) (3.3). Additionally, the number of cardiac
cycles for which a PEP duration along with the rate of missing cardiac cycles was recorded. All
these metrics were determined for each algorithm combination across all datapoints, where a
datapoint refers to a specific phase of a particular participant. In addition to the overall results across
all datapoints, the scoring functionality also provided the calculated values for each individual
datapoint.

Moreover, for each heartbeat within every datapoint, the manually labeled start and end points,
as well as the algorithmically detected points, were saved alongside the resulting PEP duration. This
detailed recording faciliated a direct comparison between the manual and algorithmic detections
for every single heartbeat.

All calculated error metrics were assessed for both datasets to determine the pipeline that
provides the most accurate estimation of PEP duration for each dataset. Among these metrics,
the MAE was considered the most critical. The MAE quantifies the absolute difference between
reference values and computed values, providing a clear and unbiased measure of error. Unlike
other metrics, the MAE does not allow positive and negative discrepancies to offset each other,
thereby ensuring a true representation of estimation accuracy concerning the difference between
the reference PEP duration and the calculated PEP duration. Additional insights were derived
from the other error metrics, allowing conclusions to be drawn about whether the PEP duration
was underestimated or overestimated and how robust and reliable the pipeline is in determining a
PEP duration for each heartbeat.

MAE =
1

n

n∑
i=1

|PEP_manual,i − PEP_calculated,i| (3.1)

ME =
1

n

n∑
i=1

(PEP_manual,i − PEP_calculated,i) (3.2)

RE =
1

n

n∑
i=1

|PEP_manual,i − PEP_calculated,i|
PEP_manual,i

(3.3)
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Results & Discussion

To assess the performance of various algorithm pipelines on the datasets, the relevant points for
PEP calculation were manually labeled in a total of 11,768 heartbeat cycles (5,004 for the TSST
Dataset and 6,764 for the GUARDIAN Dataset) in this study. This chapter presents an overview
of the results obtained and discusses relations between findings of the two datasets.

4.1 Reference PEP data

Concerning the TSST Dataset, the mean and standard deviation of the reference PEP were 88.42 ms
and 24.99 ms, with values ranging from 26 ms to 266 ms regarding the PEP duration. Distinguishing
between TSST and f-TSST a mean value of 84.73 ± 24.08 ms was obtained for the TSST, while it
was slightly higher for the f-TSST (92.57 ± 25.35 ms). For both conditions the minimum PEP
mean values occurred for Pause_1 and the maximum for Pause_5. A detailed list of all values
for the individual phases per condition is given in Table 4.1, along with a visual representation in
Figure 4.1.

In the GUARDIAN Dataset, the average PEP duration across all 6,764 labeled cardiac cycles
was 138.80 ms ± 27.03 ms, with a range between 36 ms and 292 ms. When breaking down into
the individual phases the highest mean value was obtained for the TiltUp phase with 154.18 ms ±
22.70 ms. There were only minor differences in the mean values among the remaining phases, with
the smallest mean value belonging to the Resting phase at 132.71 ms. When split into the phases,
it was also observed that the smallest PEP value of 36 ms was recorded in 2 phases: Resting and
Apnea. The Apnea phase also exhibited the maximum PEP value of 292 ms, showing a wide range
of PEP duration during this phase.
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Table 4.1: Reference PEP of the TSST Dataset divided into condition and phases

Mean [ms] Min [ms] Max [ms]

TSST

Prep 81.69 ± 21.45 27 187
Pause_1 76.61 ± 21.79 30 150

Talk 85.70 ± 28.37 27 266
Math 84.87 ± 20.62 31 144

Pause_5 99.35 ± 22.48 52 161

Total 84.73± 24.08 27 266

f-TSST

Prep 87.99 ± 24.35 33 167
Pause_1 78.85 ± 20.67 27 165

Talk 93.88 ± 24.67 26 180
Math 94.59 ± 25.70 27 163

Pause_5 111.49 ± 21.28 32 161

Total 92.57 ± 25.35 26 180
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Figure 4.1: Box plot of the reference PEP data of the TSST Dataset divided into conditions and
phases

Table 4.2 shows a precise breakdown of all parameters for the individual phases and a visualization
is provided in Figure 4.2.

Discussion

At 138.80 ms, the mean PEP duration of the GUARDIAN Dataset was 56.8% longer than the one
of the TSST Dataset, for which it was 88.49 ms. A possible explanation for this circumstance is
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Table 4.2: Reference PEP data of the GUARDIAN Dataset divided into phases

Mean [ms] Min [ms] Max [ms]

Resting 132.71 ± 25.41 36 208
Vasalva 134.99 ± 25.28 42 200
Apnea 133.76 ± 30.32 36 292
TiltUp 154.18 ± 22.70 44 250
TiltDown 135.63 ± 24.27 48 216

Total 138.80 ± 27.03 36 292
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Figure 4.2: Box plot of the reference PEP data of the GUARDIAN Dataset divided into phases

the higher average age of the participants in the GUARDIAN Dataset, as a higher age is correlated
with a longer PEP [New79].

The shorter PEP duration in every phase for the TSST in relation to the f-TSST in the TSST
Dataset reflect the induced stress and points out that the PEP is capable of providing information
about the stress level. For the GUARDIAN Dataset the observation of the highest mean value for
the TiltUp phase is indicative of the physical challenge for the body experienced during the TTT.

Since the normal range for PEP duration is between 70 ms and 175 ms, both the overall mean
and the mean values of the individual phases of both datasets are within this range [Árb17].
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4.2 Fiducial Point Detection Algorithms

In total 72 algorithm combinations were tested regarding their ability to extract the PEP duration
from ECG and ICG signals. These 72 pipelines were created by pairing each of the six Q-Wave
onset algorithms (including the algorithms with adjusted time-intervals for subtraction from the
R-Peak) with one of the four B-Point algorithm as well as with one of three Outlier Correction
algorithms (none, Intpol, AutReg). To be able to compare the algorithms performances, the Mean
Absolute Error (MAE), ME and the RE was calculated for each pipeline. Additionally, the number
of cardiac cycles in which the algorithms were able to calculate a PEP duration was also examined
(represented by #CC in the following Tables). Since the calculated values were subtracted from
the reference data to obtain the ME, a positive value represents a shorter PEP duration calculated
by the algorithms in comparison to the reference, while a negative value indicated a longer PEP
duration. An overview of the results for the 36 pipelines, constructed using the QP, RP, and RP-40
as Q-Wave onset algorithms for the TSST dataset, is provided in Table 4.3.

Table 4.3: Overview of the performance of the 36 PEP computation pipelines using the QP, RP,
and RP-40 as Q-Wave onset algorithms for the TSST Dataset. The best-performing pipeline with
respect to the lowest MAE is highlighted in bold

Q-Wave onset B-Point Correction MAE [ms] ME [ms] RE #CC

QP

MultCon
None 21.74 ± 23.65 15.88 ± 27.93 24.98% ± 25.98% 4,545

AutReg 20.80 ± 22.38 13.37 ± 27.47 23.99% ± 25.30% 4,676
Intpol 20.60 ± 22.25 12.64 ± 27.56 23.86% ± 25.37% 4,674

SecDer
None 17.83 ± 18.57 1.18 ± 25.71 22.79% ± 30.23% 4,480

AutReg 18.34 ± 19.02 -0.76 ± 26.41 24.41% ± 31.54% 4,852
Intpol 18.53 ± 19.31 -1.41 ± 26.72 24.74% ± 32.23% 4852

StrLin
None 19.00 ± 17.80 -14.38 ± 21.70 24.45% ± 26.77% 4,836

AutReg 19.51 ± 18.18 -16.82 ± 20.69 25.55% ± 28.95% 4,847
Intpol 19.69 ± 18.32 -17.15 ± 20.71 25.80% ± 29.23% 4,847

ThirDer
None 27.56 ± 21.17 -23.99 ± 25.14 35.97% ± 35.65% 4,817

AutReg 29.14 ± 21.85 -27.85 ± 23.47 38.60% ± 38.06% 4,840
Intpol 29.45 ± 21.94 -28.27 ± 23.44 39.02% ± 38.27% 4,840
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Q-Wave onset B-Point Correction MAE [ms] ME [ms] RE #CC

RP

MultCon
None 47.39 ± 21.93 47.15 ± 22.45 54.18% ± 22.40% 4,152

AutReg 46.73 ± 22.11 46.10 ± 23.40 53.15% ± 22.62% 4,395
Intpol 46.23 ± 21.99 45.50 ± 23.46 52.68% ± 22.76% 4,412

SecDer
None 41.27 ± 15.24 36.94 ± 23.89 47.52% ± 19.77% 4,617

AutReg 39.83 ± 16.35 35.37 ± 24.55 47.90% ± 23.85% 5,000
Intpol 39.46 ± 16.54 34.73 ± 24.99 47.48% ± 24.16% 5,000

StrLin
None 22.92 ± 15.85 21.19 ± 18.10 25.91% ± 16.06% 4,953

AutReg 21.91 ± 14.57 19.21 ± 17.98 24.93% ± 15.91% 4,991
Intpol 21.71 ± 14.48 18.89 ± 18.01 24.73% ± 15.98% 4,991

ThirDer
None 18.33 ± 14.73 11.10 ± 20.73 21.68% ± 18.86% 4,901

AutReg 17.21 ± 13.34 8.15 ± 20.19 20.63% ± 18.83% 4,976
Intpol 17.09 ± 13.27 7.75 ± 20.20 20.52% ± 18.87% 4,977

RP-40

MultCon
None 20.64 ± 21.86 12.67 ± 27.26 23.86% ± 23.53% 4,743

AutReg 19.70 ± 20.44 10.08 ± 26.54 22.90% ± 22.96% 4,861
Intpol 19.54 ± 20.36 9.40 ± 26.61 22.81% ± 23.10% 4,860

SecDer
None 14.55 ± 19.20 -3.06 ± 23.89 19.10% ± 31.53% 4,617

AutReg 15.64 ± 19.48 -4.63 ± 24.55 21.37% ± 32.96% 5,000
Intpol 16.05 ± 19.86 -5.27 ± 24.99 21.98% ± 33.80% 5,000

StrLin
None 22.32 ± 14.26 -18.28 ± 19.16 29.10% ± 23.71% 4,989

AutReg 22.91 ± 15.23 -20.74 ± 18.06 30.30% ± 26.75% 4,995
Intpol 23.16 ± 15.38 -21.05 ± 18.16 30.62% ± 26.98% 4,996

ThirDer
None 31.18 ± 18.02 -27.55 ± 23.18 40.94% ± 33.12% 4,984

AutReg 32.77 ± 18.83 -31.57 ± 20.77 43.56% ± 35.82% 4,994
Intpol 33.10 ± 18.91 -31.97 ± 20.77 44.02% ± 36.02% 4,995

In addition to the RP-40 algorithm proposed by van Lien et al., which subtracts 40 ms from
the R-Peak to determine the PEP start point, several adjusted algorithms that subtract 32, 34, and
36 ms were also tested [Lie13]. The results for the TSST dataset, obtained from the 36 pipelines
constructed using these adjusted Q-Wave onset algorithms, are presented in TableA.1.

The lowest MAE of 14.55 ms ± 19.20 ms, was exhibited by the combination of the RP-40
and SecDer method without Outlier Correction. Furthermore, this pipeline achieved the lowest
RE with 19.10% ± 31.53%. Using this combination, the PEP duration was determined for 4,617
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cardiac cycles. With a MAE of 47.39 ms ± 21.93 ms, the worst performance was achieved by the
pipeline consisting of the RP and MultCon algorithms without Outlier Correction. Additionally,
this combination had the lowest number of cardiac cycles (4,152) for which a PEP duration was
determined, corresponding to a missing heartbeat rate of 17.03%. The lowest rate of missing
heartbeats, with 0.08% (5,000 out of 5,004 cardiac cycles), was achieved by the RP and all of the
methods that subtract a certain time interval from the R-Peak in combination with the SecDer
method and Outlier Correction.

The performances of the individual pipelines for the GUARDIAN Dataset were evaluated
accordingly (Table 4.10). The results of the pipelines using the adjusted versions of the RP-40
algorithm to determine the Q-Wave onset can be found in Table A.2. The lowest MAE for this
dataset was 18.41 ms ± 16.32 ms, achieved by the pipeline consisting of the RP-32 and StrLin
algorithm without Outlier Correction. With a total of 6,754 cardiac cycles for which the PEP could
be determined using these algorithms, the missing heartbeat rate was 0.15%. The RP algorithm in
combination with MultCon algorithm and the use of the AutReg method for Outlier Correction
exhibited the highest MAE of 53.60 ms ± 38.68 ms. Furthermore, this combination exhibited the
lowest number of cardiac cycles (5,727) in which a PEP duration could be determined, which is
equivalent to no PEP being extracted for 15.33% of the heartbeats.

Table 4.4: Overview of the performance of the 36 PEP computation pipelines using the QP, RP,
and RP-40 as Q-Wave onset algorithms for the GUARDIAN Dataset

Q-Wave onset B-Point Correction MAE [ms] ME [ms] RE #cc

QP

MultCon
None 27.85 ± 35.89 19.78 ± 40.90 20.29% ± 25.35% 5,900

AutReg 31.05 ± 38.34 22.04 ± 44.14 22.58% ± 27.09% 6,442
Intpol 30.22 ± 37.82 20.45 ± 43.88 22.10% ± 26.95% 6,441

SecDer
None 25.82 ± 26.60 -13.25 ± 34.62 20.87% ± 26.34% 6,643

AutReg 26.31 ± 26.84 -15.10 ± 34.42 21.33% ± 26.72% 6,647
Intpol 27.07 ± 27.13 -16.38 ± 34.65 22.00% ± 27.31% 6,647

StrLin
None 20.44 ± 18.53 -16.84 ± 21.85 16.87% ± 20.58% 6,646

AutReg 21.27 ± 19.04 -18.45 ± 21.79 17.68% ± 21.45% 6,647
Intpol 21.60 ± 19.33 -18.91 ± 21.97 17.97% ± 21.73% 6,647

ThirDer
None 26.30 ± 23.37 -16.89 ± 30.86 21.39% ± 24.86% 6,645

AutReg 26.41 ± 23.12 -21.36 ± 27.85 21.82% ± 25.51% 6,645
Intpol 27.19 ± 23.39 -22.88 ± 27.62 22.53% ± 26.01% 6,645
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Q-Wave onset B-Point Correction MAE [ms] ME [ms] RE #cc

RP

MultCon
None 50.27 ± 34.05 49.88 ± 34.62 36.11% ± 22.79% 5,727

AutReg 53.60 ± 38.68 52.98 ± 39.52 38.31% ± 26.09% 6,305
Intpol 52.31 ± 38.13 51.49 ± 39.22 37.40% ± 25.82% 6,312

SecDer
None 35.36 ± 17.04 21.43 ± 32.88 26.51% ± 16.71% 6,752

AutReg 33.92 ± 17.27 19.61 ± 32.62 25.34% ± 16.66% 6,756
Intpol 33.44 ± 17.46 18.35 ± 32.96 25.00% ± 17.04% 6,756

StrLin
None 21.56 ± 15.61 17.72 ± 19.86 15.59% ± 12.78% 6,752

AutReg 20.78 ± 14.74 16.13 ± 19.72 15.13% ± 12.69% 6,752
Intpol 20.69 ± 14.65 15.68 ± 19.92 15.11% ± 12.81% 6,753

ThirDer
None 26.53 ± 22.36 17.72 ± 29.83 20.05% ± 18.96% 6,752

AutReg 23.19 ± 18.58 13.32 ± 26.56 17.64% ± 17.10% 6,752
Intpol 22.55 ± 18.04 11.83 ± 26.35 17.26% ± 17.08% 6,752

RP-40

MultCon
None 28.69 ± 34.33 15.68 ± 41.90 21.19% ± 24.22% 6,057

AutReg 31.41 ± 36.18 17.64 ± 44.55 23.16% ± 25.69% 6,598
Intpol 30.73 ± 35.82 16.12 ± 44.36 22.79% ± 25.79% 6,599

SecDer
None 24.66 ± 28.60 -18.57 ± 32.88 20.44% ± 28.91% 6,752

AutReg 25.61 ± 28.70 -20.39 ± 32.62 21.30% ± 29.24% 6,756
Intpol 26.63 ± 29.08 -21.65 ± 32.96 22.22% ± 29.96% 6,756

StrLin
None 25.56 ± 15.69 -22.21 ± 20.15 21.20% ± 21.16% 6,755

AutReg 26.39 ± 16.45 -23.79 ± 20.02 22.01% ± 22.09% 6,756
Intpol 26.74 ± 16.79 -24.25 ± 20.21 22.31% ± 22.37% 6,756

ThirDer
None 30.75 ± 21.13 -22.24 ± 29.96 25.17% ± 25.44% 6,754

AutReg 31.18 ± 21.23 -26.64 ± 26.72 25.88% ± 26.37% 6,754
Intpol 32.06 ± 21.58 -28.13 ± 26.50 26.66% ± 26.95% 6,754

The highest number of cardiac cycles that could be achieved in this dataset was 6,756. This
number occurred for several pipelines.
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Discussion

In the TSST dataset, the best-performing combination failed to extract a PEP duration for a
relatively high number of heartbeats (7.65%). By using AutReg, the number of detected PEP
duration increased from 4,617 to 5,000, the maximum achieved by any of the pipelines. While
this led to a slightly higher MAE of 15.64 ms, it may be more beneficial to use this combination
for achieving the most complete detection of PEP values on the entire signal. The MAE of this
combination was the third smallest among all pipelines.

The combination of the RP-36 and the SecDer method without Outlier Correction performed
second best in terms of MAE (15.44 ms), but it detected the same number of heartbeats as the
best combination, and is therefore offering no additional advantage.

The algorithm combination that identified the smallest and the largest number of cardiac
cycles with a determined PEP duration was consistent across both datasets. This indicates that the
algorithms performance in this regard is stable across different datasets.

To perform Outlier Correction on the detected B-Points, both an autoregressive model and
an Intpol algorithm were implemented, following approaches by previous work [For19]. When
looking at the number of heart cycles in which the algorithms were able to determine a PEP,
it is evident across both datasets and all pipelines that both methods were able to increase the
number of detected cycles. Notably, the combinations that used the MultCon algorithm for B-Point
detection stand out. Using Outlier Correction with these combinations resulted in a considerably
higher number of cardiac cycles where a valid PEP was extracted. Maximum improvement was
achieved with the combination of the RP and MultCon algorithms in the GUARDIAN dataset by
applying Intpol to the detected B-Points. The 5,727 cardiac cycles could be increased to 6,305,
which corresponds to an increase of 10.09%.

However, both Outlier Correction methods improved the results concerning MAE only in a few
cases. One possible explanation is that the points were determined using only the parts of the signal
within the randomly selected intervals for manual labeling, which were either 10s, 30s or 60s,
depending on the phase. In particular, the autoregressive model could benefit from a longer signal
sequence to make more accurate forward and backward estimations [Bro04]. This limited data
availability likely restricted the model’s ability to effectively correct outliers. Consequently, the
improvements in results were not as prominent as expected when using these correction methods.
However, it can be argued that the Outlier Correction allowed for the inclusion of more points in
the error value calculations, as it enabled the determination of the PEP for a higher number of
cardiac cycles. The relatively small increase in the values of MAE, ME, and RE suggests that
the newly identified values through Outlier Correction were determined with good accuracy with
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respect to the reference data. Therefore the higher MAE cannot generally be associated with
poorer performance. It is also notable that the values of the RE align with the results of the MAE,
in the form that a smaller MAE corresponded to a smaller RE, and vice versa.
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4.2.1 Q-Wave onset

In addition to evaluating the ability of the different algorithm combinations to determine the PEP
duration, the accuracy of the Q-Wave onset algorithms in pinpointing this specific point was also
assessed. To isolate the accuracy of the Q-Wave onset algorithms, the detected start points were
combined with the manually labeled B-Points to calculate the PEP. This approach isolates the
error arising solely from the start points in determining the PEP duration. Information about the
MAE, the ME, and the RE for every Q-Wave onset detection algorithm, including the modified
versions of the algorithm by Van Lien et al., using time intervals of 32, 34, and 36 ms instead of
40 ms, are listed in Table 4.5 [Lie13].

Table 4.5: Performance of the Q-Wave onset algorithms for the TSST Dataset. The best-performing
algorithm with respect to the lowest MAE is highlighted in bold

Q-Wave onset MAE [ms] ME [ms] RE #CC

QP 5.29 ± 9.55 -4.42 ± 9.98 6.76% ± 13.31% 4,856
RP 31.59 ± 6.70 31.59 ± 6.70 37.88% ± 11.56% 5,004

RP-32 5.70 ± 3.56 -0.41 ± 6.70 7.26% ± 5.65% 5,004
RP-34 5.61 ± 4.39 -2.41 ± 6.70 7.36% ± 7.12% 5,004
RP-36 6.04 ± 5.28 -4.41 ± 6.70 8.09% ± 8.56% 5,004
RP-40 8.76 ± 6.24 -8.41 ± 6.70 11.63% ± 10.52% 5,004

The smallest MAE within this Dataset was found for the QP algorithm with 5.29 ms ± 9.55 ms.
The ME and its standard deviation appeared at -4.42 ms and 9.98 ms. This algorithm showed with
4,856 the smallest amount of cardiac cycles in which it was able to detect a point. This represents
a 3.00% rate of heartbeats for which no start point was detected.

The second-best algorithm for TSST Dataset was the RP-34 algorithm, with a slightly larger
MAE of 5.61 ms. However, the ME was smaller, at -2.41 ms, compared to the QP algorithm.
Notably, the standard deviation for the RP-34 algorithm, as with all R-Peak based algorithms, was
also slightly smaller than that of the QP algorithm.

The highest MAE along with the highest ME and RE was calculated for the RP algorithm. All
methods based on the R-Peak were able to determine a starting point for all labeled cardiac cycles
(5,004). Figure 4.3 contains the residual plots of all Q-Wave onset algorithms. Figures B.1 and B.2
display the same plots with color differentiation between the individual participants and phases.
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Figure 4.3: Residual plots of the Q-Wave onset algorithms for the TSST Dataset

Similarly to the TSST Dataset, Table 4.6 contains the MAE, ME, and RE along with the
amount of cardiac cycles for all Q-Wave onset algorithms along with the modified versions of the
RP-40 algorithm for the GUARDIAN Dataset. For this dataset, the QP algorithm demonstrated the
lowest MAE of 4.15 ms ± 12.31 ms. With 2.99% ± 9.18% the RE was smallest for this algorithm
as well. The number of heartbeats for which a starting point could be determined was 6,655. Thus,
the QP algorithm exhibits the highest rate of missing cardiac cycles at 1.6% for this dataset. All
other Algorithms were able to detect a start point for all 6,764 cardiac cycles.

For the GUARDIAN Dataset, the RP-32 method achieved the second-lowest MAE of 4.81 ms.
The ME was -0.44 ms ± 7.11 ms, which was smaller than the one of the QP Algorithm. It can
also be noted here that the standard deviation of the algorithms based on the R-Peak are smaller
compared to the QP algorithm.

In contrast, the RP algorithm showed the highest error values for the GUARDIAN Dataset,
with an MAE of 31.67 ms and an ME of 31.56 ms, along with the highest RE of 23.61% among
all the Q-Wave onset algorithms.
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Table 4.6: Performance of the Q-Wave onset algorithms for the GUARDIAN Dataset. The best-
performing algorithm with respect to the lowest MAE is highlighted in bold

Q-Wave onset MAE [ms] ME [ms] RE #CC

QP 4.15 ± 12.31 -3.09 ± 12.62 2.99% ± 9.18% 6,655
RP 31.67 ± 6.62 31.56 ± 7.11 23.61% ± 7.15% 6,764

RP-32 4.81 ± 5.26 -0.44 ± 7.11 3.78% ± 5.07% 6,764
RP-34 4.97 ± 5.65 -2.44 ± 7.11 3.98% ± 5.46% 6,764
RP-36 5.65 ± 6.20 -4.44 ± 7.11 4.55% ± 5.95% 6,764
RP-40 8.56 ± 6.97 -8.44 ± 7.11 6.77% ± 6.77% 6,764

For this dataset, Figure 4.4 provides the residual plots of the Q-Wave onset algorithms, along
with a breakdown between the individual participants and phases in Figures B.3 and B.4, respec-
tively.
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Figure 4.4: Residual plots of the Q-Wave onset algorithms for GUARDIAN Dataset
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Discussion

The best-performing algorithm for pinpointing the PEP start points in both dataset was the QP
algorithm. Given that the onset of the R-Peak was used for the manually labeled data, as well as
within the QP algorithm, it seems logical that this algorithm showed the smallest average deviation
from the reference. However, despite the QP algorithm having the MAE, it had the lowest amount
of cardiac cycles in which it was able to identify a point.

Additionally, for both datasets, the RP algorithm consistently exhibited the poorest performance.
Since the proposal to use the R-Peak as start point of the PEP is based on its simple and reliable
detection and not on its physiological accuracy, this is not surprising. The poor performance is
also evidenced by the fact that the RP algorithm was the only one that failed to accurately pinpoint
the PEP start point in any cardiac cycle of both datasets without any deviation. In contrast, all
other algorithms were able to detect the correct point in several heartbeats of both datasets.

It was also found that algorithms that exhibited low MAE also demonstrated low RE, and vice
versa. Consequently, the relative error RE mirrors the findings of the MAE.

For the start algorithms, a positive ME value indicates that the Q-Wave onset was set later
than in the reference data, resulting in a shorter PEP. Since the calculated PEP is subtracted
from the reference, this produces a positive ME value. Conversely, a longer PEP, indicating an
earlier Q-Wave onset, is represented by negative ME values. The negative values for ME for each
algorithms except the RP one shows that these set the Q-Wave onset earlier than it is in the reference
data, resulting in a longer PEP duration. The positive ME of the RP algorithm is expected, as the
R-Peak occurs after the Q-Wave onset.

Examining the ME revealed that the algorithms with the second-lowest MAE for both datasets,
had a smaller ME than the QP algorithm. This indicates that the QP algorithm produces more values
that deviate noticeably in the negative direction from the ground truth. However, these negative
deviations are balanced out by positive deviations in the MAE calculation. This observation is
also evident in the Figures 4.3 and 4.4, where the plots for the QP algorithm show more outliers,
particularly in the negative y-axis, than the algorithms based on subtracting a time period from the
R-Peak. Upon examination of Figure B.3, it is evident from the residual plot of the QP algorithm
that numerous outliers can be attributed to participants identified as “GDN0009” and “GDN0022”
in the GUARDIAN Dataset. This observation suggests that the inaccurate detections were likely
caused by artifacts or signal interference in the data from these participants. Since the R-Peak
is easier to identify, the accuracies of the remaining algorithms were not affected by this. When
divided into phases (Figure B.4), the outliers can primarily be attributed to the TiltUp and TiltDown
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phases. Since these phases involve movement of the participant, this further supports the hypothesis
that increased disturbances, such as noise in the signal, occurred in the cases of the outliers.

This assumption can be confirmed investigating the ECG signal more closely. Figure 4.5 shows
a part of the ECG signal of participant “GDN0009” (top), where in comparison to the ECG signal
of participant “GDN0030” (bottom), more noise can be observed especially in the area of the
Q-Wave.
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Figure 4.5: Selected ECG signal period of participant “GDN0009” (top) and “GDN0030” (bottom)
from the GUARDIAN Dataset

In the TSST dataset, the outliers could not be attributed to few individual participants or
phases. Generally, Figure B.1 and B.2 reveal fewer outliers with high negative deviation for the
QP algorithm within this dataset. Nevertheless, the observed outliers can similarly be attributed to
signal interference. However, in this case, the disturbances affect smaller segments of the signal
rather than the entire signal of a participant.

Upon examination of the different adaptations of the algorithm that subtracts a specific time
interval from the R-Peak, it was observed that the version with a 40ms interval exhibits the largest
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MAE, ME, and RE among all algorithms of this type across both datasets. Therefore, for both
datasets, the interval of 40ms proposed by Van Lien et al. could not be supported, since this time
interval did not prove to be the best for subtraction in either dataset [Lie13].
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4.2.2 B-Point

Using the same principle as for the Q-Wave Onset algorithms, the error caused only by the end
points was determined for the B-Point algorithms. For this purpose, the B-Points detected with the
different algorithms and possibly Outlier Correction were combined with the manually labeled start
points to calculate the PEP. An overview of the results obtained for the TSST Dataset can be found
in Table 4.7. The StrLin algorithm showed the lowest MAE of 14.92 ms ± 14.94 ms. The ME and
its standard deviation of this algorithm were -9.99 ms and 18.60 ms, respectively. Furthermore,
the StrLin algorithm had the lowest RE of 18.94% ± 20.80%. With a total of 4,983 cardiac cycles
for which a B-Point was identified, this algorithm has a rate of 0.42% missing heartbeats. The
highest MAE with 25.03 ms ± 18.42 ms occurred for the ThirDer method in combination with
Intpol for Outlier Correction. This pairing also showed the highest RE of 33.12% ± 32.12%.

The lowest ME of 3.14 ms ± 24.52 ms was achieved by the SecDer method while using Intpol
to correct the found B-Points.

The lowest rate of heartbeats without a detected B-Point was achieved by using the SecDer
algorithm with Outlier Correction. With 5,000 detected B-Points, this rate was 0.08%. Figure
4.6 provides residual plots of every algorithm with either none or one of the two Outlier Correc-
tion methods. Additionally, two further plots were generated as shown in Figure B.5 and B.6,
highlighting the different participants and phases.

Table 4.7: Performance of the B-Point algorithms for the TSST Dataset. The best-performing
algorithm with respect to the lowest MAE is highlighted in bold

B-Point Correction MAE [ms] ME [ms] RE #CC

MultCon
None 21.98 ± 24.91 20.26 ± 26.33 25.08% ± 26.89% 4,676

AutReg 20.90 ± 23.37 17.87 ± 25.76 23.88% ± 25.74% 4,812
Intpol 20.64 ± 23.18 17.20 ± 25.84 23.65% ± 25.69% 4,812

SecDer
None 17.08 ± 16.87 5.29 ± 23.41 21.82% ± 26.99% 4,617

AutReg 17.40 ± 17.15 3.78 ± 24.14 23.27% ± 28.23% 5,000
Intpol 17.57 ± 17.38 3.14 ± 24.52 23.55% ± 28.84% 5,000

StrLin
None 14.92 ± 14.94 -9.99 ± 18.60 18.94% ± 20.80% 4,983

AutReg 15.31 ± 14.92 -12.36 ± 17.43 19.92% ± 22.97% 4,994
Intpol 15.46 ± 15.04 -12.69 ± 17.44 20.13% ± 23.25% 4,994

ThirDer
None 23.38 ± 18.14 -19.68 ± 22.10 30.38% ± 29.85% 4,957

AutReg 24.73 ± 18.44 -23.33 ± 20.18 32.72% ± 31.93% 4,986
Intpol 25.03 ± 18.51 -23.74 ± 20.13 33.12% ± 32.12% 4,986
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Figure 4.6: Residual plots of the B-Point algorithms for the TSST Dataset

Analogous to the TSST dataset, Table 4.8 presents the results of all B-Point algorithms for
the GUARDIAN Dataset. The lowest MAE (17.79 pm 15.08) for this dataset was achieved by
using the StrLin algorithm without Outlier Correction. The lowest RE of 14.93% ± 18.54% was
also achieved using this algorithm. The associated ME was -13.82 ms ± 18.79 ms. Additionally,
with 6,754 detected B-Points, the StrLin algorithm had a rate of 0.15% cardiac cycles for which
not B-Point could be determined. The highest MAE of 30.58 ms ± 40.19 ms was found for the
MultCon algorithm with the usage of AutReg for Outlier Correction. This pairing showed with
a value of 22.18% ± 28.12% also the highest RE within this dataset. The MultCon algorithm
without Outlier Correction also exhibited the highest rate of heartbeats without a determined
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B-Point (11.44%). The lowest ME was achieved by the SecDer algorithm with -10.16 ms ± 32.07
ms.

A visualization of the results in the form of a residual plot is available in Figure 4.7. Additional
versions of this residual plot (B.7 and B.8) are provided, which highlight individual participants
and phases.

Table 4.8: Performance of the B-Point algorithms for the GUARDIAN Dataset. The best-
performing algorithm with respect to the lowest MAE is highlighted in bold

B-Point Correction MAE [ms] ME [ms] RE #CC

MultCon
None 27.08 ± 37.69 22.62 ± 40.52 19.64% ± 26.26% 5,990

AutReg 30.58 ± 40.19 24.98 ± 43.89 22.18% ± 28.12% 6,539
Intpol 29.73 ± 39.63 23.43 ± 43.66 21.68% ± 27.95% 6,539

SecDer
None 23.47 ± 24.11 -10.16 ± 32.07 19.19% ± 24.65% 6,752

AutReg 23.86 ± 24.29 -11.99 ± 31.87 19.58% ± 24.99% 6,755
Intpol 24.55 ± 24.61 -13.26± 32.14 20.19% ± 25.61% 6,755

StrLin
None 17.79 ± 15.08 -13.82 ± 18.79 14.93% ± 18.54% 6,754

AutReg 18.52 ± 15.62 -15.40 ± 18.70 15.67% ± 19.45% 6,755
Intpol 18.82 ± 15.99 -15.86 ± 18.93 15.94% ± 19.77% 6,755

ThirDer
None 23.99 ± 21.35 -13.84 ± 28.98 19.68% ± 23.38% 6,753

AutReg 23.75 ± 20.62 -18.24 ± 25.62 19.87% ± 23.86% 6,753
Intpol 24.50 ± 20.92 -19.74 ± 25.47 20.56% ± 24.42% 6,753

Discussion

For both datasets, the StrLin algorithm did perform best in regard to the MAE. The second-best
algorithm also matched for both datasets: the SecDer algorithm. The remaining two algorithms
differed depending on the dataset: for the TSST Dataset, the MultCon approach by Forouzanfar et
al. achieved better results, while for the GUARDIAN Dataset, the ThirDer algorithm performed
better in calculating the correct B-Point. As with the Q-Wave onset algorithms, a correlation
between MAE and RE was also observed for the B-Point algorithms. Higher MAE values were
consistently associated with higher RE values, and vice versa.

In the case of the B-Point algorithms, a positive ME indicates that the point was found earlier
compared to the reference. An earlier B-Point leads to a shorter PEP when using the same start
point. Since the calculated time is subtracted from the reference, positive values result. Logically
following, a negative value indicates that the points were found too late. When looking at the ME,
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Figure 4.7: Residual plots of the B-Point algorithms for the GUARDIAN Dataset

it can be observed that for both datasets, the SecDer algorithm had the smallest absolute values,
with 5.29 ms for the TSST Dataset and -10.16 ms for the GUARDIAN Dataset. The positive value
for the TSST Dataset indicates that the B-Point was set earlier than in the reference, while for the
GUARDIAN Dataset, the negative value indicates that it was set later than the manually labeled
reference value. For the remaining algorithms, the sign of the ME is consistent for both datasets.
Both the StrLin and ThirDer algorithms tend to detect the B-Point later than the reference value,
while the MultCon algorithm tends to detect it earlier. These observations are also visually evident
in the Figures 4.6 and 4.7 by the position of the offset.

Particularly in the residual plots containing the MultCon method, it can be seen that the
deviation upwards is limited by the reference PEP length. Since the same start point was assumed
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for both the reference and the determined PEP, and the B-Point cannot be located before the
Q-Wave onset, the reference value itself represents the maximum possible difference in the positive
direction when subtracting the calculated PEP duration from the reference. The fact, that this
boundary is particularly noticeable in the plots of the MultCon algorithm, coincides with the ME
of this algorithm over both datasets. The MultCon algorithm had the highest positive ME with
20.26 ms and 22.62 ms respectively. From this it can be deduced that this method has the strongest
tendency to set the B-Point too early, closer to the Q-Wave onset, resulting in a shorter PEP. From
the breakdown by participants and phases, no specific trends stand out for either dataset. Overall,
the error values of the end-point algorithms were higher compared to the start-point algorithms,
except for the RP algorithm. This suggests that the error in determining the PEP duration using
the pipelines is more influenced by the end-point, which is understandable since the B-Point is
considered difficult to identify correctly [She90; For19]. The higher errors are also apparent in the
residual plots, where the outliers tend to deviate more substantially from the mean compared to
those observed in the plots generated by the start-point algorithms.

The rate of identified points from all heartbeats is also lower for the B-Point algorithms
compared to the Q-Wave onset algorithms. Consequently, it can be inferred that in this aspect as
well, the B-Point algorithms have a greater impact on the results of the pipelines.

It is also noteworthy that using certain pipeline combinations resulted in a higher number of
cardiac cycles where a PEP duration could be determined, compared to evaluating only the B-Point
algorithms. For instance, in the TSST dataset, the MultCon approach combined with manually
labeled start points was able to determine a PEP duration for 4,676 heartbeats. In contrast, the
combination of the RP-40 and MultCon approaches identified 4,743 PEP values.

At first glance, this might seem counterintuitive. However, the explanation lies in the fact
that the B-Point algorithm, when used with reference values, resulted in negative PEP duration
for several heartbeats because the B-Point was detected before the Q-Wave onset. Since such
negative duration are physiologically implausible, these heartbeats were classified as artefacts. By
using the RP-40 algorithm, different start points were identified, which did not necessarily lead to
negative values, thereby allowing the determination of a PEP duration for more cardiac cycles by
this algorithm combination.

Furthermore, as already previously observed with the pipelines for determining the PEP
duration, the Outlier Correction only improved the results in few cases with respect to the MAE.
Concerning the TSST Dataset only the MAE of the MultCon algorithm was reduced from 21.93
ms to 20.60 ms through Intpol and to 20.85 ms by using the autoregressive approach. In the
GUARDIAN Dataset, Outlier Correction improved the MAE only for the ThirDer method, with
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a slight reduction from 23.83 ms to 23.65 ms through Intpol. For all other algorithms, Outlier
Correction did not lead to a smaller MAE in either dataset. On the other hand, using Outlier
Correction led to a higher number of cardiac cycles across all algorithms and both datasets. The
most prominent increase was observed for the MultCon algorithm concerning the GUARDIAN
Dataset: the number of cardiac cycles for which a B-Point was found increased from 5,861 to
6,407 through the use of the AutReg approach. This corresponds to an increase of 9.3%. As
previously discussed, these slightly higher MAE values should not necessarily be interpreted
as strictly negative. Since the values are only marginally higher when using Outlier Correction
compared to without, and the number of cardiac cycles is also higher, it suggests that the newly
identified points are determined with minimal deviation from the reference data. This indicates
good performance of the Outlier Correction algorithms in this aspect.
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4.2.3 Best-performing Algorithms

For the TSST Dataset, the combination of using the RP-40 algorithm for the start point and the
SecDer method for determining the end point without Outlier Correction emerged as the most
accurate pipeline. This combination showed a MAE of 14.55 ms ± 19.20 ms. Table 4.9 lists the
PEP values calculated by this algorithm combination, categorized by condition and phase.

Table 4.9: PEP duration calculated by best-performing pipeline for the TSST Dataset divided into
conditions and phases

Mean [ms] Min [ms] Max [ms]

TSST

Prep 88.32 ± 28.10 41 327
Pause_1 81.65 ± 21.31 41 159

Talk 92.86± 32.48 41 242
Math 88.04 ± 22.88 41 179

Pause_5 97.15 ± 22.67 41 148

Total 89.74± 27.39 41 327

f-TSST

Prep 95.07 ± 27.04 42 168
Pause_1 83.90 ± 23.11 43 154

Talk 99.95 ± 30.12 42 306
Math 100.00 ± 28.50 41 247

Pause_5 111.31 ± 22.31 50 155

Total 98.34 ± 28.35 41 306

The mean duration of the by the best-performing pipeline computed PEP for the TSST was
with 89.74 ms shorter than the calculated mean duration for the f-TSST with 98.34 ms. The highest
estimated PEP duration was found within the Prep phase of the TSST where it amounted to 327
ms. The mean of the entire dataset, without subdivision into the two conditions, was 93.03 ms,
which is 5.2% higher than the mean of the reference PEP data.

In Figure 4.8, the box plots of both the PEP duration calculated by the pipeline and the reference
values are presented.

As previously discussed in Chapter (4.2), the number of cardiac cycles for which a PEP duration
could be determined using this combination is relatively small. Therefore, it was suggested to
additionally apply AutReg to increase this number. For the resulting combination of RP-40,
SecDer, and AutReg, the PEP durations were also determined, segmented by condition and phase.
The results are presented in Table A.3. Analogous to the version without AutReg, the box plots
can be found in Figure B.9.
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Figure 4.8: PEP duration per phase compared between best-performing pipeline of the TSST
Dataset and the reference data
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Figure 4.9: Residual plots of best-performing pipeline of the TSST Dataset without Outlier
Correction (left) and with AutReg (right)

The residual plots in Figure 4.9 display the combination of the RP-40 and SecDer algorithms
without outlier correction (left) and with AutReg (right).
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For the GUARDIAN Dataset, the combination of the RP-32 and StrLin performed best with a
MAE of 18.41 ms ± 16.32 ms. The PEP values determined by these algorithms are listed in Table
4.10, differentiated by phase. The mean of the calculated PEP values was 153.00 ms ± 20.73 ms,
with a maximal duration of 356 ms. In comparison to the reference PEP data, the mean duration
of the PEP calculated by the algorithm combination was 10.23% higher.

Table 4.10: PEP duration calculated by best-performing pipeline for the GUARDIAN Dataset
divided into phases

Mean [ms] Min [ms] Max [ms]

Resting 149.67 ± 16.70 84 200
Vasalva 149.27 ± 17.91 86 230
Apnea 147.82 ± 23.80 22 292
TiltUp 166.42 ± 19.09 70 356
TiltDown 149.59 ± 18.48 80 196

Total 153.00 ± 20.73 22 356

Figure 4.10 shows the box plot of both the calculated PEP and the reference PEP next to one
another. In Figure 4.11 residual plots of the best-performing pipeline without Outlier Correction
(left) and with AutReg (rigth) are displayed.
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Figure 4.10: PEP duration per phase compared between best-performing pipeline of the
GUARDIAN Dataset and the reference data

Discussion

For both datasets, calculating the PEP duration with the best-performing pipeline combination
resulted in a higher mean PEP duration compared to the manually labeled reference (5.2% and
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Figure 4.11: Residual plots of best-performing pipeline of the GUARDIAN Dataset without
Outlier Correction (left) and with AutReg (right)

10.23%, respectively). This observation is also evident from the negative values of the ME of
both algorithm combinations. Since the ME is produced by subtracting the value calculated by the
algorithms from the actual value, the negative mean indicates a consistent trend of overestimating
the PEP duration in the computed data.

This overestimation can also be observed in the box plots (Figures4.8 and 4.10, respectively),
where the medians of the individual phases are noticeably higher compared to the reference plots,
indicating longer PEP duration calculated by the algorithms. Furthermore, the box plots show that
the relative differences across the individual phases are preserved. Regarding the TSST Dataset, it
is notable that the difference between the two conditions, TSST and f-TSST, is also evident in the
PEP times determined by the algorithm combinations.

Figures 4.9 and 4.11 display residual plots for the best-performing algorithm combinations
of the two datasets. Notably, both residual plots exhibit a negative offset, again representing the
overestimation in PEP duration.

Overall, it can be concluded that the overestimation by the algorithm combinations is consis-
tently observed across the different phases of both datasets (Except for the Pause_5 phases of both
conditions in the TSST dataset). Consequently, the variation between the individual phases of
the datasets remains accurately represented. For many applications, the relative change in PEP
duration between different scenarios is more crucial, as the total duration can vary strongly between
individuals. For instance, the change in PEP duration for an individual across various situations
can provide insights into the level of stress experienced by that person [New79; Ber04]. Increased
stress typically results in a reduced PEP duration. The preservation of the difference in PEP
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duration between the two phases of the TSST dataset demonstrates that the algorithm-determined
PEP is capable of reflecting the stress level.

These observations are also visible for the combination of RP-40, SecDer, and AutReg for the
TSST Dataset. Visually, it is noticeable in the residual plot (Figure 4.9) that some points form
a horizontal line at the upper left edge, which is not present without AutReg. This phenomenon
can be attributed to the Outlier Correction process, where R-peaks were designated as B-points if
no other points could be identified. Upon examining the residual plots for the best-performing
pipeline of the GUARDIAN Dataset, it is evident that this line is not visible in the plot with
AutReg. This can be explained by the fact, that when combining Algorithm that subtracts 32
ms from the R-Peak to identify the start point (RP-32) and StrLin algorithms with AutReg, PEP
calculation was possible for only one additional cardiac cycle compared to the pipeline without
Outlier Correction. Consequently, there aren’t any points could build this line.

Given that the normal PEP duration ranges from 70 ms to 175 ms, the mean values from all
discussed combinations for both datasets fall within the normal PEP range [Árb17]. Based on
the previously discussed results, it is surprising that for both datasets, a combination using the
RP algorithm for detecting the PEP start point ranks high in terms of performance, even though
the RP is showing the highest MAE among all Q-Wave onset algorithms. For the TSST Dataset,
this algorithm, in combination with the ThirDer method and using Intpol for Outlier Correction,
results in an MAE of 18.33 ms. For the GUARDIAN Dataset, the combination of RP with StrLin
and Intpol has a slightly higher MAE of 21.56 ms compared to the best-performing algorithm. The
ME of this combination is 15.61 ms. An explanation for this can be found in the fact that both the
RP algorithm and the ThirDer, as well as the StrLin algorithm tend to place the respective points
on average later than the reference values. Because both the start and end points are consistently
set too late, this offsets each other in terms of the distance between them, thereby ensuring that the
PEP duration remains accurate. Figure 4.12 shows an example cardiac cycle from GUARDIAN
Dataset, where the combination of RP and StrLin algorithm with Intpol for Outlier Correction
achieved a deviation of 0 ms between the calculated PEP time and the reference. This clearly
indicates that both algorithms did not detect the point labeled as the reference. Both the start and
end points are located later than their respective references. However, due to the shift of both
points, the final PEP duration remains the same at 118 ms.

For both datasets, the combination of the best-performing pipelines does not correspond to the
algorithms that achieved the best results in the individual determination of the start and end points.
This can also be attributed to the fact that the two algorithms used in the pipeline do not accurately
determine the points, but their offsets compensate well when calculating the PEP duration.
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Figure 4.12: Detected Points with RP and StrLin algorithm for the GUARDIAN Dataset

4.3 General Discussions & Limitations

During the manual labeling process, heartbeats for which either one of the points could not be
clearly identified were marked as artefacts and excluded from the evaluation. The approach aimed
to prevent errors in automatic detection caused by strong signal disturbances from affecting the
results, Since no reliable conclusions could have been drawn from this data.

The investigation of the pipeline performances showed that for locating the Q-Wave onset,
the QP algorithm achieved the best results for both datasets. For determining the B-Point, the
StrLin method presented by Drost et al. proved to be the best [Dro22]. When determining the best
pipeline for PEP calculation, the results varied between the two datasets. For the TSST Dataset,
the combination of the RP-40 and the SecDer algorithm emerged as the best. For the GUARDIAN
Dataset, it was the RP-32 with the StrLin method. The difference in algorithm performances
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between the two datasets highlights the importance of benchmarking to achieve the best possible
results for specific data and therefore underscores the motivation of this thesis.

The two used datasets were labeled by two different individuals. Although both individuals
adhered to the same guidelines and standards for labeling, it is important to acknowledge that
achieving a 100% match between the labels of the two datasets cannot be guaranteed. Differences
in interpretation, subtle variations in judgment, and human error are inherent in manual labeling
processes. In the future, it may be beneficial to jointly label data from two individuals rather than
labeling them individually. This approach would allow for the assessment of interrater reliability
and enable consensus decisions in cases where points of uncertainty arise, to get two opinions
which point is most accurate.

Due to the absence of Q-Waves fore some participants, the onset of the R-Wave was chosen as
the starting point instead of the Q-Wave onset, following the suggestion of Berntson et al. [Ber04].
While this choice facilitates the comparability of PEP values across all participants it causes
deviation from the precise physiological definition of PEP, leading to inaccuracies in its duration
as defined. As a result, the PEP values obtained in this study are constrained in their ability to
draw conclusions based on the absolute PEP values. However, for the evaluation of algorithm
performance conducted in this study, these deviations are unlikely to significantly impact results.
This is because the algorithms were evaluated based on their relative performance in detecting and
measuring PEP durations, which remains consistent regardless of the chosen starting point.



Chapter 5

Conclusion & Outlook

The goal of this bachelor thesis was to present the first systematic benchmark for PEP extraction
algorithms. For this purpose a total of 11,768 cardiac cycles composed of two different datasets,
that were conducted using individual study protocols and measurement systems, were manually
labeled to build a basis of PEP reference data on which algorithms for automatic point detection
can be tested. In one study, participants underwent the TSST and the f-TSST to induce acute
psychosocial stress and a concurrent control condition, while the other part of the data was obtained
from the execution of a TTT

Within this thesis, a total of 72 comprehensive data science pipelines consisting of algorithms
to detect the start and end point of the PEP. All pipelines were tested on the two datasets and
compared based on their accuracy in determining the PEP duration. In addition to the results for
the determined PEP duration, the Q-Wave onset and B-Point algorithms were also individually
compared regarding their ability to pinpoint the respective points.

Although no single combination of algorithms could be identified as the best-performing,
as different results were observed for each dataset, some similarities between the datasets were
determined and valuable insights were gained.

Given that the same algorithms were identified for both datasets as those providing results with
the least deviation from the reference for determining the Q-Wave onset and B-Points individually,
it would be beneficial to investigate whether this consistency holds true across additional datasets.
This validation should be an integral part of future research to ensure the robustness and reliability
of these algorithms. Similarly, the results regarding the worst-performing pipeline were consistent
across both datasets. Further validation of this observation through evaluation with additional
datasets could also be beneficial.
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Moreover, it would be interesting to investigate the limited success achieved by using Outlier
Correction concerning the MAE in more detail. Even though the Outlier Correction algorithms
universally increased the number of heartbeats from which a PEP duration could be determined, it
was noted that this also correlated with a higher MAE. As previously mentioned, the slightly higher
MAE could alternatively indicate that the points newly identified through Outlier Correction are
determined with high accuracy, thereby suggesting that the higher MAE values do not necessarily
correlate with poorer performance. However, it would be interesting to examine if using longer
signals, especially with the autoregression method, could potentially lead to better results.

To achieve meaningful and reliable results when benchmarking data, it is crucial to provide
a comprehensive spectrum of data on which the algorithms can be tested. This data should
include a variety of situations and measurement systems to ensure the algorithm’s performance is
robust across different conditions. Therefore, expanding the foundation established in this work
with additional datasets is useful for creating a solid benchmark for PEP computing algorithms.
Conclusively, this thesis provides a valuable first step towards the objective benchmarking of
PEP extraction algorithms. In the spirit of open science, the implementation framework has
been designed to allow the easy inclusion of additional datasets, thereby fostering continuous
enhancement and extension to create a robust and reliable benchmark in this field, enabling it to
exploit the potential of the PEP in clinical and research application.
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Appendix A

Additional Tables

Table A.1: Overview of the performance of the 36 PEP computation pipelines using the RP-32,
RP-34, and RP-36 as Q-Wave onset algorithms for the TSST Dataset

Q-Wave onset B-Point Correction MAE [ms] ME [ms] RE #CC

RP-32

MultCon
None 23.60 ± 23.77 20.19 ± 26.73 26.87% ± 25.21% 4,707

AutReg 22.50 ± 22.38 17.83 ± 26.25 25.64% ± 24.32% 4,841
Intpol 22.24 ± 22.25 17.17 ± 26.36 25.40 % ± 24.30% 4,841

SecDer
None 17.17 ± 17.34 4.94 ± 23.89 21.30% ± 27.83% 4,617

AutReg 17.55 ± 17.49 3.37 ± 24.55 22.94% ± 29.24% 5,000
Intpol 17.78 ± 17.77 2.73 ± 24.99 23.34% ± 29.96% 5,000

StrLin
None 15.71 ± 14.99 -10.30 ± 19.11 20.59% ± 21.94% 4,988

AutReg 16.11 ± 15.14 -12.74 ± 18.06 21.58% ± 24.34% 4,995
Intpol 16.29 ± 15.26 -13.07 ± 18.10 21.82% ± 24.59% 4,995

ThirDer
None 24.01 ± 18.23 -19.78 ± 22.75 32.04% ± 31.05% 4,971

AutReg 25.28 ± 18.63 -23.60 ± 20.71 34.25% ± 33.32% 4,992
Intpol 25.57 ± 18.72 -24.02 ± 20.67 34.65% ± 33.52% 4,992
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Q-Wave onset B-Point Correction MAE [ms] ME [ms] RE #CC

RP-34

MultCon
None 22.63 ± 23.53 18.38 ± 26.98 25.82% ± 24.91% 4,720

AutReg 21.55 ± 22.05 15.94 ± 26.39 24.65% ± 24.05% 4,849
Intpol 21.30 ± 21.90 15.26 ± 26.47 24.43% ± 24.05% 4,848

SecDer
None 16.19 ± 17.81 2.94 ± 23.89 20.36% ± 28.78% 4,617

AutReg 16.76 ± 17.99 1.37 ± 24.55 22.16% ± 30.17% 5,000
Intpol 17.05 ± 18.29 0.73 ± 24.99 22.62% ± 30.93% 5,000

StrLin
None 17.25 ± 14.85 -12.28 ± 19.16 22.61% ± 22.39% 4,989

AutReg 17.69 ± 15.19 -14.74 ± 18.06 23.64% ± 24.96% 4,995
Intpol 17.90 ± 15.36 -15.05 ± 18.16 23.92% ± 25.23% 4,996

ThirDer
None 25.74 ± 18.22 -21.74 ± 22.84 34.18 % ± 31.58% 4,973

AutReg 27.09 ± 18.72 -25.60 ± 20.71 36.51% ± 33.97% 4,992
Intpol 27.39 ± 18.82 -26.02 ± 20.67 36.92% ± 34.18% 4,992

RP-36

MultCon
None 21.76 ± 23.05 16.48 ± 27.08 24.93% ± 24.47% 4,728

AutReg 20.71 ± 21.53 13.97 ± 26.41 23.81% ± 23.65% 4,852
Intpol 20.49 ± 21.41 13.29 ± 26.49 23.63% ± 23.70% 4,851

SecDer
None 15.44 ± 18.26 0.94 ± 23.89 19.69% ± 29.69% 4,617

AutReg 16.19 ± 18.47 -0.63 ± 24.55 21.65% ± 31.09% 5,000
Intpol 16.52 ± 18.79 -1.27 ± 24.99 22.17% ± 31.88% 5,000

StrLin
None 18.88 ± 14.65 -14.28 ± 19.16 24.72% ± 22.81% 4,989

AutReg 19.38 ± 15.20 -16.74 ± 18.06 25.81% ± 25.55% 4,995
Intpol 19.60 ± 15.37 -17.05 ± 18.16 26.10% ± 25.81% 4,996

ThirDer
None 27.54 ± 18.19 -23.63 ± 23.04 36.43% ± 32.13% 4,979

AutReg 28.95 ± 18.78 -27.60 ± 20.71 38.82% ± 34.59% 4,992
Intpol 29.27 ± 18.87 -28.00 ± 20.71 39.26% ± 34.81% 4,993
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Table A.2: Overview of the performance of the 36 PEP computation pipelines using the RP-32,
RP-34, and RP-36 as Q-Wave onset algorithms for the GUARDIAN Dataset. The best-performing
pipeline with respect to the lowest MAE is highlighted in bold

Q-Wave onset B-Point Correction MAE [ms] ME [ms] RE #CC

RP-32

MultCon
None 29.26 ± 36.36 22.82 ± 40.71 21.29% ± 25.24% 6,016

AutReg 32.26 ± 38.55 24.93 ± 43.65 23.44% ± 26.90% 6,561
Intpol 31.39 ± 38.04 23.39 ± 43.42 22.92% ± 26.81% 6,561

SecDer
None 24.42 ± 24.42 -10.57 ± 32.88 19.86% ± 25.49% 6,752

AutReg 24.73 ± 24.62 -12.39 ± 32.62 20.19% ± 25.85% 6,756
Intpol 25.50 ± 24.95 -13.65 ± 32.96 20.91% ± 26.53% 6,756

StrLin
None 18.41 ± 16.32 -14.23 ± 20.07 15.67% ± 19.95% 6,754

AutReg 19.17 ± 16.74 -15.82 ± 19.94 16.43% ± 20.75% 6,755
Intpol 19.46 ± 17.07 -16.27 ± 20.13 16.69% ± 21.04% 6,755

ThirDer
None 24.77 ± 22.06 -14.24 ± 29.96 20.55% ± 24.50% 6,754

AutReg 24.54 ± 21.43 -18.64 ± 26.72 20.76% ± 25.06% 6,754
Intpol 25.24 ± 21.69 -20.13 ± 26.50 21.41% ± 25.58% 6,754

RP-34

MultCon
None 28.66 ± 36.14 21.06 ± 41.03 20.93% ± 25.15% 6,027

AutReg 31.66 ± 38.24 23.14 ± 43.92 23.09% ± 26.76% 6,572
Intpol 30.83 ± 37.75 21.60 ± 43.69 22.61% ± 26.71% 6,572

SecDer
None 24.19 ± 25.57 -12.57 ± 32.88 19.79% ± 26.41% 6,752

AutReg 24.66 ± 25.75 -14.39 ± 32.62 20.26% ± 26.76% 6,756
Intpol 25.50 ± 26.10 -15.65 ± 32.96 21.04% ± 27.45% 6,756

StrLin
None 20.17 ± 16.19 -16.21 ± 20.15 17.04% ± 20.27% 6,755

AutReg 20.94 ± 16.70 -17.79 ± 20.02 17.81% ± 21.10% 6,756
Intpol 21.24 ± 17.04 -18.25 ± 20.21 18.08% ± 21.39% 6,756

ThirDer
None 26.16 ± 21.83 -16.24 ± 29.96 21.63% ± 24.74% 6,754

AutReg 26.11 ± 21.40 -20.64 ± 26.72 21.98% ± 25.40% 6,754
Intpol 26.86 ± 21.69 -22.13 ± 26.54 22.66% ± 25.94% 6,754
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Q-Wave onset B-Point Correction MAE [ms] ME [ms] RE #CC

RP-36

MultCon
None 28.33 ± 35.66 19.24 ± 41.28 20.78% ± 24.93% 6,036

AutReg 31.26 ± 37.67 21.28 ± 44.09 22.89% ± 26.47% 6,579
Intpol 30.47 ± 37.22 19.73 ± 43.87 22.44% ± 26.47% 6,579

SecDer
None 24.13 ± 26.66 -14.57 ± 32.88 19.86% ± 27.29% 6,752

AutReg 24.77 ± 26.82 -16.39 ± 32.62 20.46% ± 27.64% 6,756
Intpol 25.68 ± 27.17 -17.65 ± 32.96 21.29% ± 28.34% 6,756

StrLin
None 21.95 ± 15.99 -18.21 ± 20.15 18.42% ± 20.55% 6,755

AutReg 22.74 ± 16.60 -19.79 ± 20.02 19.20% ± 21.42% 6,756
Intpol 23.06 ± 16.94 -20.25 ± 20.21 19.48% ± 21.71% 6,756

ThirDer
None 27.64 ± 21.59 -18.24 ± 29.96 22.77% ± 24.97% 6,754

AutReg 27.76 ± 21.34 -22.64 ± 26.72 23.25% ± 25.73% 6,754
Intpol 28.56 ± 21.66 -24.13 ± 26.50 23.97% ± 26.28% 6,754

Table A.3: PEP of RP-40 and SecDer with AutReg for the TSST Dataset divided into condition
and phases

Mean ± Std Min Max

TSST

Prep 86.64 ± 31.28 40 337
Pause 1 77.35 ± 24.64 40 159

Talk 91.68± 34.33 40 242
Math 87.44 ± 24.03 40 179

Pause 5 99.05 ± 23.25 40 150

Total 88.54± 29.63 40 337

f-TSST

Prep 92.00 ± 30.11 40 168
Pause 1 79.99 ± 26.12 40 154

Talk 101.12 ± 30.85 40 306
Math 102.34 ± 29.05 40 247

Pause 5 112.98 ± 21.36 67 155

Total 98.09 ± 30.15 40 306
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Figure B.1: Residual plots of the Q-Wave onset algorithms for the TSST Dataset divided into
participants
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Figure B.2: Residual plots of the Q-Wave onset algorithms for the TSST Dataset divided into
phases
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Figure B.3: Residual plots of the Q-Wave onset algorithms for the GUARDIAN Dataset divided
into participants
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Figure B.4: Residual plots of the Q-Wave onset algorithms for the GUARDIAN Dataset divided
into phases
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Figure B.5: Residual plots of the B-Point algorithms for the TSST Dataset divided into participants
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Figure B.6: Residual plots of the B-Point algorithms for the TSST Dataset divided into phases
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Figure B.7: Residual plots of the B-Point algorithms for the GUARDIAN Dataset divided into
participants
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Figure B.8: Residual plots of the B-Point algorithms for the GUARDIAN Dataset divided into
phases
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Figure B.9: PEP duration per phase compared between best-performing pipeline with AutReg for
the TSST Dataset and the reference data





Appendix C

Acronyms

GUARDIAN GUarded by Advanced Radar technology-based DIagnostics Applied in palliative and
intensive care Nursing

ECG Electrocardiogram

TSST Trier Social Stress Test

f-TSST Friendly Trier Social Stress Test

TTT Tilt Table Test

PEP Pre Ejection Period

ICG Impedance cardiogram

dZ/dt first derivative of the cardiac impedance

ANS Autonomic Nervous System

SNS Sympathetic Nervous System

PNS Parasympathetic Nervous System

HR Heart Rate

HRV Heart Rate Variability

dZ2/dt2 second derivative of the cardiac impedance

dZ3/dt3 third derivative of the cardiac impedance

ARIMA Autoregressive Integrated Moving Average
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AIC Akaike information criterion

IMU Inertial Measurement Units

MAE Mean Absolute Error

ME Mean Error

RE Relative Error

PPG Photoplethysmogram

EEG Electroencephalography

DEAP Dataset for Emotion Analysis using Physiological Signals

BP blood pressure

QP Algorithm that uses the Q-Peak as start point

RP Algorithm that uses the R-Peak as start point

RP-40 Algorithm that subtracts 40 ms from the R-Peak to identify the start point

RP-32 Algorithm that subtracts 32 ms from the R-Peak to identify the start point

RP-34 Algorithm that subtracts 34 ms from the R-Peak to identify the start point

RP-36 Algorithm that subtracts 36 ms from the R-Peak to identify the start point

RP-36 Algorithm that subtracts 36 ms from the R-Peak to identify the start point

MultCon Algorithm that uses multiple conditions to identify the end point

SecDer Algorithm that uses reversal points of the second derivative to identify the end point

ThirDer Algorithm that uses local maxima of the third derivative to identify the end point

StrLin Algorithm that uses the maximal distance to a straight line between the C-Point and 150 ms before
the C-Point to identify the end point

Intpol Interpolation

AutReg Autoregression
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