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Übersicht

In dieser Arbeit wird die Weiterentwicklung des CARWatch-Frameworks beschrieben. CAR-
Watch wurde entwickelt, um Studien zur Untersuchung der Cortisolaufwachreaktion (CAR) zu
unterstützen, die eine genaue und objektive Bewertung der Aufwach- und Speichelprobenzeiten
erfordern. CARWatch ist ein Open-Source-Framework, das aus einer Webapp, einer Android-App
und einem Python-package besteht. Zu den Erweiterungen gehörten Funktionen zur Aufzeichnung
zusätzlicher Daten, die für CAR-Bewertungen von Nutzen sein können, sowie Verbesserungen
hinsichtlich der Anpassbarkeit, Flexibilität und Benutzeroberfläche der Anwendungen. Das Frame-
work wurde anhand von Daten der Trierer Alltagsstressstudie evaluiert, einer von der Universität
Trier durchgeführten Studie, die den Zusammenhang zwischen dem Stressniveau im Alltag und
verschiedenen individuellen Variablen untersucht. Die für die Evaluation verwendete Studien-
phase umfasste 30 Teilnehmende, die angewiesen wurden, 6 Speichelproben pro Tag über 4
Tage zu nehmen, einschließlich 2 Arbeitstagen und 2 Nicht-Arbeitstagen. Die Android-App
wurde als objektives Kontrollinstrument für die Probenahmezeiten verwendet. Es wurden Daten
über das Probenahmeverhalten der Teilnehmenden sowie die CAR-Merkmale, AUCG und AUCI

analysiert. Die erhobenen Daten zeigten ein konsistentes Probenahmeverhalten mit insgesamt
geringen Probenahmeverzögerungen. Anders als in der bisherigen Forschung wurden, außer
für berufstätige Teilnehmer, keine nennenswerten Unterschiede bei den Probenahmezeiten und
den CAR-Merkmalen zwischen Arbeitstagen und Nicht-Arbeitstagen festgestellt. Dies könnte
darauf hindeuten, dass die Auswirkung der Tagesform auf den CAR vom Beschäftigungsstatus
des Einzelnen abhängt. Um diese Annahme zu beweisen, sind jedoch weitere Untersuchungen
erforderlich.



vi

Abstract

This thesis describes the further development of the CARWatch framework. CARWatch is designed
to support studies investigating the cortisol awakening response (CAR), which requires an exact
and objective assessment of awakening and saliva sampling times. CARWatch is an open-source
framework that consists of a webapp, an Android app, and a Python package. Enhancements
included functionality to record additional data that can be beneficial for CAR assessments, and
improvements regarding the customizability, flexibility, and user interface of the applications. The
framework was evaluated using data from the Trier Everyday Stress Study, a study conducted
by the University of Trier that examines the relationship between stress levels in everyday life
and various individual variables. The study phase used for evaluation included 30 participants
who were instructed to take 6 saliva samples per day over 4 days, including 2 workdays and 2

non-workdays. The Android app was used as an objective verification tool for sampling times.
Data was analyzed on participants’ sampling behavior as well as the CAR features AUCG and
AUCI . The collected data indicated consistent sampling behavior with overall low sampling
delays. In contrast to existing research, no noticeable differences in sampling times and CAR
features between workdays and non-workdays were found except for employed participants. This
might indicate that the effect of the day type on the CAR depends on the employment status of the
individual. However, further investigation is needed to prove this assumption.
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Chapter 1

Introduction

Experiencing stress is a regular part of our daily life and although stress is a healthy reaction of our
body that can increase our reactivity and performance, long-term stress is known to have a negative
influence on our health. Psychological stress is even associated with various diseases, such as
depression, cardiovascular disease (CVD), and HIV/AIDS [Coh07]. The human body's response
to a stressor is governed by two main stress pathways, the autonomic nervous system (ANS)
and the hypothalamic-pituitary-adrenocortical (HPA) axis. The ANS triggers various protective
mechanisms, such as increasing the heart rate and blood pressure. The activation of the HPA axis
results in a release of glucocorticoid hormones that influence the distribution of the body's energy
resources depending on the needs. One of those hormones is cortisol, which makes it an objective
and well-established stress marker [Ulr09].

The cortisol concentration in blood and saliva usually follows a diurnal pattern. Cortisol levels
sharply increase during the first 30 to 45min after awakening. Then they decline steadily until
reaching their nadir around midnight. In the second half of the night, they slowly rise again [Ada09].
The rapid increase in cortisol levels of 50 to 156% after awakening [Clo04] is also known as
cortisol awakening response (CAR). The CAR was first systematically described by Pruessner et
al. [Pru97] and indicates the basal HPA axis activity [Chi09; Kud10]. CAR research quickly gained
popularity, with over 700 publications related to CAR according to Scopus, due to its relation to
several psychosocial factors like exhaustion, burnout, or different types of stress [Chi09; Clo04;
Fri09; Kud10]. The CAR is typically assessed by measuring the cortisol levels in saliva samples
upon awakening and in fixed intervals of 10 to 15min throughout the first 30 to 60min after
awakening [Sta16; Sta22]. Most CAR studies use two parameters to analyze the CAR. First, the
overall amount of cortisol released during the observed period, which is determined by computing
the integrated area under the curve (AUCG), and second, the increase of cortisol from the level
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recorded on waking (AUCI) [Chi09; Pru03]. Due to the sharp rise of cortisol levels within a short
time period during the CAR, delayed sampling can have a large impact on those metrics. Precise
sampling is therefore essential for CAR assessments but often hard to achieve since most studies
are conducted ambulatory with unsupervised self-collection of saliva samples [Sta16; Sta22].
Researchers need to ensure that both awakening time and sampling times are recorded correctly
and objectively to prevent incorrect conclusions caused by the participants.

The gold standard to measure sleep objectively is polysomnography (PSG), obtaining record-
ings from several channels, such as electroencephalography (EEG), electrooculography (EOG),
electromyography (EMG), and electrocardiography (ECG). Afterwards, the recordings are an-
alyzed to assess sleep parameters. Although already used in CAR research [Oku10], PSG is
costly, labor-intensive, disruptive to the participants’ normal sleep routines, and not applicable
for ambulatory measurements [Sta16]. Thus, it is not suitable for large-scale field studies. More
cost-effective methods for determining the wake-up time are wrist actigraphy [Lic06] or forced
awakening [Sta16]. Recent studies also showed that consumer electronic wearables, such as fitness
trackers or smartwatches, can be a suitable alternative to assess sleep parameters [Hag19; Chi22].

Regarding objective sampling time verification, the best practice is to use electronic monitoring
devices, such as screw up bottles or boxes that record the times of bottle openings [Sta16]. To
record the sampling times, the sampling devices are stored inside the bottle/box and the participants
are instructed to open them before sampling so that the opening time stamps can be used as a
measure for the sampling time. The main disadvantage hereby are costs and scalability as one
box is needed for each sample and participant. A cheaper method is to use smartphones since
most people already have access to a smartphone. Previous work has shown that smartphones
can be utilized in CAR assessments as they provide multiple beneficial built-in functionalities.
Smartphones were integrated into studies in different ways, e.g., by prompting the participant to
take a selfie each time a sample was taken [Zhu19], presenting a unique code that the participants
had to record on the label of the sampling device used [Bed19; Pow15; Pow12], or sending text
messages to the participant via a customized software, which they had to answer within a short
time window after taking the sample [Rod18]. While these methods offer a low-cost solution, they
can lead to issues, such as privacy violations and inaccurate awakening times due to the reliance
on participants’ self-reporting their wake-up times. Furthermore, the software used in the last two
approaches is not publicly available, which would incur additional costs for future studies.

Although available, most studies (68.5%) still lack objective assessment methods [Sta22].
Existing methods are often not suited for studies with a limited budget as they require cost-intensive
technology or software and cannot be integrated in studies that take place in the participants’



3

domestic settings. To solve this methodological issue, CARWatch was developed as a low-cost
tool that enables an objective assessment of CAR sampling times [Ric23]. CARWatch is an
open-source project designed for ambulatory studies, which utilizes smartphones and their in-built
features, such as alarms and cameras to remind the participant of taking samples and to confirm
the sampling by scanning a barcode attached to the sampling device. In the scope of this thesis,
the CARWatch framework was enhanced by integrating access to external sleep recording devices,
improving the user experience by providing an in-built introduction to the CARWatch app and
a redesigned user interface, and increasing customizability to make CARWatch accessible to a
broader range of researchers. The app was evaluated based on data from the Trier Everyday
stress study (TriASS)1 (originally: “Trierer Alltagstress-Studie”), which was collected using the
CARWatch framework.

1https://www.uni-trier.de/universitaet/fachbereiche-faecher/fachbereich-i/faecher-und-institute/psychologie/profes-
suren/biologische-klinische-psychologie/forschung-v1/trierer-alltagsstress-studie





Chapter 2

Related Work

The CAR can be described as a rapid increase in cortisol concentration during the first hour after
awakening. It serves as a reliable biological marker for adrenocortical activity [Pru97] and can
give insights into multiple psychosocial factors [Kud03a; Chi09].

The following Sections will explain the typical CAR assessment process, identify factors that
can confound the results, and describe methods that minimize their impact to prevent erroneous
conclusions.

2.1 CAR Assessment

CAR assessment requires determination of the cortisol levels throughout the first 30 to 60min
after awakening [Clo04; Clo10; Kud10; Eld14]. This is usually done by collecting either blood or
saliva samples upon awakening and in intervals of 10 to 15min thereafter for a total of up to 5

samples. Depending on the study settings, the sampling process is repeated over the course of
up to 5 days [Sta16]. A large proportion of CAR studies take place in the participants’ domestic
settings and rely on salivary cortisol samples that are easily collectible and minimally invasive to
minimize costs and maintain the participants’ daily routines [Sta16]. To guarantee the stability
of the cortisol concentration, participants are usually instructed to place the samples in their
home freezer and return them to the laboratory where they are analyzed as soon as possible.
Concerning the measurement of cortisol concentration, antibody-based immunoassays are usually
used [Sta16; Cho22]. In an ambulatory study, awakening and sampling times are often recorded
by the participants themselves, typically using pen-and-paper-based protocols, which increases
the error-proneness, especially since the temporal accuracy of reported awakening and sampling
times has a large impact on the CAR curve derived from the measurements.
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Delay between awakening and first sample
Kupper et al. were the first to describe awakening time related sampling inaccuracies [Kup05].
They conducted a study with more than 700 participants of which 77 showed a negative CAR.
Additional ECG and body movement recordings of 59 of those participants revealed a time
difference between reported awakening and measured awakening of 42min (range between 10min
and 135min) for 80% of them which caused the inaccuracies.

To show the impact of inaccurate awakening times, Smyth et al. conducted a study with 50

healthy female participants [Smy13]. Each participant had to collect one sample (S1) immediately
after awakening and three follow up samples (S2, S3, and S4) in intervals of 15min thereafter. The
samples were collected over 4 days. The awakening time was determined by self-report as well as
actigraphy, a motion-based method to measure sleep (for further explaination see Section 2.2).
On average, the self-reported awakening time was around 4min later than the awakening time
estimated by actigraphy. To show the actual impact of delayed awakening reports, the cortisol
measurements of adherent days (delay < 5min) were compared to the measurements of non-
adherent days (delay of 10 to 15min). The results showed that CAR estimates were significantly
higher on non-adherent days compared to adherent days with cortisol levels peaking at S3 for
non-adherent days and S4 for adherent days. According to Smyth et al., this can be explained by a
short time lag of 10 to 15min between awakening and cortisol rise (see Figure 2.1) which would
not have been detected if the self-reported awakening times were used [Smy13]. As depicted in
Figure 2.2, increasing delays also have an increasing impact on the AUCI [Sta16].

Figure 2.1: Illustration of the impact of delayed awakening time reporting on the estimated CAR
profile [Smy13].
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Figure 2.2: Illustration of the impact of delayed sampling on the computed AUCI. The Figure
depicts estimates given (a) correct sampling and for delays of (b) 8 min, (c) 20 min, and (d) 40
min between awakening and collecting S1 [Sta16].

Griefahn and Robens conducted 3 studies with 108 participants in total who were instructed to
take samples on 6 to 8 days [Gri11]. They found that on 19.3% of days there were delays in the
first sample of 3 to 30min and on 14.0% of days there were delays of more than 30min, which
shows that delays occur frequently and can have a large impact on CAR measurements.

Inaccurate post-awakening sampling times
In addition to monitoring awakening time, it is also crucial to objectively track the post-awakening
sampling times. Although objective control methods for sampling times are used more often
than objective control methods for awakening times, most CAR studies still rely on self-reported
sampling times without further verification [Sta16; Sta22].

Kudielka et al. conducted a study in which the participants had to collect 6 saliva samples
throughout one day in intervals after awakening and at fixed times during the day [Kud03b]. An
electronic monitoring device was used to measure the sampling times and compare them to the
self-reported sampling times. 24 of the 47 participants were not informed about the additional
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monitoring. 11 participants failed to obtain the sample at the correct time at least once with the
informed group adhering to the sampling schedule more closely. The results also showed that
noncompliance had a larger impact on the cortisol levels measured after awakening than those
measured throughout the rest of the day.

Similar results were obtained by Broderick et al., who analyzed objective compliance and self-
report compliance of 66 participants that had to take 5 samples over 7 days, respectively [Bro04].
The samples were scheduled immediately upon awakening, 45min after awakening, and 16:00,
19:00, and 22:00. Non-compliance was defined as missing the defined sampling time by more
than 15min for the morning samples and 60min for the afternoon samples. While self-reported
compliance was 93%, actual objective compliance was considerably lower at 71% showing that
participants tended to misjudge their adherence to the sampling schedule. Non-compliance resulted
in a flatter cortisol slope showing that even liberal compliance windows of 15min have an impact
on the results.

The impact of non-compliance on the cortisol rise after awakening was investigated by Kudielka
et al. [Kud07]. They showed that noncompliant participants had a significantly lower cortisol rise
after awakening than compliant participants and 60% of the participants took a sample outside of
the specified 10-minute time window on at least one of the three sampling days. An even larger
compliance issue was observed in a study conducted by Smith and Dougherty, who analyzed
the sampling behavior of preschool-age children and their parents over two days [Smi14]. The
sampling inaccuracy in this study was even higher with 44.3% of the CAR samples being taken
outside of the specified 10-minute time window, which resulted in a higher waking cortisol and
lower CAR. Golden et al. conducted a larger-scale study with N = 935 participants over 3 days
with 6 samples per day [Gol14]. The first sample had to be taken directly after awakening, while a
second one was scheduled 30min later. The sampling delay of the first sample was larger than
15min for 21.0% of the samples and even 31.2% of the second samples.

Confounding factors
Due to the potential for errors, methodological standards for CAR assessments were published
in 2016 and updated in 2022 [Sta16; Sta22]. Alongside issues resulting from inaccurate sample
and awakening time reporting and methods to deal with these issues, several covariates that can
influence the CAR directly were listed. According to the authors, these factors should be monitored
and considered as potential confounds throughout the assessment. One of those parameters is
the light level a person is exposed to in the morning with higher light levels being related to an
elevated CAR and vice versa [Fig12; Tho04]. Researchers should therefore monitor the ambient
light level by either obtaining self-report data from the participants (e.g., request information
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about use of eye masks and lighting of bedroom) or measuring it (e.g., through small photosensor
devices [Fig12]) [Sta16]. An increased CAR was also shown on weekdays compared to non-
weekdays [Kun04; Sch04]. This might be related to the participants’ anticipation of the day ahead
and the perspective memory load [Bäu13; Gri11; Sta10; Mar15]. Alongside these covariates,
Stalder et al. proposed several verification methods for awakening and sampling times that are
introduced in the following Section [Sta16; Sta22].

2.2 Objective Verification Methods

Objective awakening time verification
The gold standard to assess sleep parameters is PSG. Hereby, multiple body functions such as brain
activity, eye movements, muscle activity, and heart rhythm are monitored and aggregated to detect
sleep stages [VAN11]. Although PSG has already been used in different CAR studies [Oku10;
Gri10; Gri11], it has some substantial disadvantages especially for ambulatory, large-scale studies,
as it is costly and labor intensive. Furthermore, PSG is disruptive to participants’ normal routine
which can have an influence on the CAR.

A cheaper and less disruptive method is wrist actigraphy. This method utilizes wrist-worn
devices with an in-build accelerometer with a high sensitivity to detect and monitor wrist move-
ment [Lic06]. Scoring algorithms that use predefined activity count thresholds are employed to
infer sleep-wake measures, which can be used to determine different sleep parameters such as
latency to sleep, wake time after sleep onset, total sleep time, and awakening time [Sad02; Lic06].

In a systematic review, Haghayegh et al. suggested that recent-generation Fitbit devices that
utilize heart rate as well as body movements do comparatively well in estimating the total sleep
time [Hag19]. Similar results were achieved by Chinoy et al., who compared gold standard
sleep measurement techniques and commercial wearable sleep tracking devices under naturalistic
unrestricted home sleep conditions [Chi22]. The study included 21 participants whose sleep was
monitored over one week. Four commercial sleep tracking devices and one actigraphy watch
were tested and compared to a mobile sleep EEG headband device. The results indicated that the
commercial sleep tracking devices performed equally well or better than the actigraphy device.

Another approach for determining the time of awakening is the use of a body movement
monitor worn on the chest, which also records heart interbeat interval (IBI) data. Since waking
from sleep is associated with an increase in heart rate [Hui94; Tri01; Tri03], available IBI and
actigraphy data could help to determine the time of waking more accurately. Chest-worn motility
monitors were already used in CAR research [Kup05; Sta11].
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Apart from methodological strategies, awakening time accuracy can also be achieved through
study design by forced awakening. Hereby, participants are externally woken by either other persons
(e.g., study personnel or parents for children) or alarm clocks [Sta16]. Since the CAR is not affected
by whether the participant woke up spontaneously or was externally woken [Wüs00; Sta09] there
are no significant changes in the CAR profile to be expected. However, when using this strategy,
researchers have to consider that the participants might wake up prior to the scheduled awakening
time and therefore must provide an additional option to assess the awakening time [Sta16].

Objective sampling time verification
A second potential source of error in CAR surveys is inaccurate sampling times. Different

strategies have been used to verify self-reported sampling times.
According to the Expert consensus guidelines published by Stalder et al., the current best prac-

tice is using screw top bottles that record the times when they have been opened (e.g., MEMS®Track
Cap; AARDEX, Ltd., Zug, Switzerland1) or alternatively boxes with the same feature [Sta16]. The
participants get one bottle/box per scheduled sample with the sampling devices being stored inside
the bottle/box. They are also instructed to open the bottles/boxed just before they have to take
the sample so that recorded the timestamps are as close as possible to the actual sampling time.
Although the method was already used in CAR assessments as well as in compliance/adherence
studies [Kud07; Gol14], it is not protected against intentional misuse (e.g., if participants open the
bottle and take the respective sample later) and becomes very expensive for large-scale studies
as one bottle/box per sample is needed [Sta16]. In an update of the guidelines from 2022, the
authors suggested the use of smartphones as an objective sampling time verification tool [Sta22].
Smartphones can be of great benefit for CAR assessments as most people have access to them,
which means that no additional, cost-intensive hardware is required, and they provide multiple
in-built functionalities such as camera and displaying notifications [Sta16; Sta22].

One method to confirm sampling times, that has already proven useful, was to set up a phone
so that it gives an acoustic alarm in the morning until the participant engages with the phone. Then,
a code is shown on the display, which has to be recorded on the label of the sampling device. The
process is repeated each time a sample is due [Pow12; Pow15; Bed19]. This way, the participants
are more likely to take the samples at the desired times and the sampling device can later be
matched to the respective sampling time.

1https://aardexgroup.com/smart-pill-bottle/
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A similar method is to send text messages to the participants which they must reply to within a
short time window [Rod18]. Here, the replies can be used as timestamp as well as a compliance
marker. Hence, samples for which the reply is missing can be considered non-compliant and sorted
out.

However, both methods described above are only advisable if the participants initiate the
sampling procedure by themselves. If the reminders for the first samples are sent at pre-set,
estimated awakening times and the participant woke up prior to the reminder, the procedure would
be invalid [Sta22]. Zhu et al. utilized the camera functionality of smartphones by instructing
the participants to take a photo upon awakening and each time they took a saliva sample. An
automatically generated time stamp of the photo was used as sampling time assessment and
adherence confirmation [Zhu19].

Haase et al. even provided a specifically designed tracking app for their study. The app guided
the participants and displayed a 60-second timer for each sample. The participants were instructed
to take a photo of the respective saliva sample and press a button once the timer expired. When
the button was pressed, a timestamp was stored which could later be compared photo’s time stamp
to verify compliance [Haa24].

A similar low-cost solution that enables objective verification is CARWatch. CARWatch is
an app that reminds the participants to take samples using the phones alarm functionality. To
confirm that the sample was taken, the participant has to scan a barcode that is attached to the
sampling device. A detailed description of the CARWatch framework can be found in Chapter 3.
The app was evaluated in a study with a total of 288 participants of which 65 were instructed to use
CARWatch. The results showed that using the app increased adherence to the sampling schedule
and led to a more consistent sampling behavior [Ric23].

This thesis focuses on improving and extending the CARWatch framework to provide an open-
source, modular, and flexible tool for improving CAR assessments by helping to objectively verify
awakening and sampling times. Within this thesis, additional features that can further improve the
assessments and prevent eventual confounding factors were included into the CARWatch framework.
Additionally, a potential influence of the factors non-workday/workday (see Section 2.1) on the
sampling behavior will further be investigated.





Chapter 3

Methods

The CARWatch framework provides a low-cost objective verification tool for sampling times that
can easily be integrated into field studies. It can be used for any diurnal biomarker collection at
home but was mainly designed to support the assessment of cortisol sampled during the CAR.
Since the source code is publicly available1, researchers are also able to customize the framework
for their own purposes.

This Chapter describes the functionalities and architecture of the CARWatch framework. The
first part gives a brief overview of the core features of each component alongside a description
of the component’s usage. Afterwards, the user interface and features of the webapp are further
explained and the last part describes the user interface of the Android app and functionalities.

3.1 Framework overview

The CARWatch framework consists of three applications: a smartphone app, a webapp, and a
Python package. The individual applications are designed to be used together and fulfill different
purposes (see Figure 3.1).

The webapp serves as a configuration and preparation tool for setting up and configuring studies.
Information about the study is encoded into QR codes which are then parsed by the smartphone
app to configure the app accordingly. The webapp was developed using the web framework svelte2

and consists of a study configurator and an analysis tool. The study configurator contains multiple
Hypertext Markup Language (HTML) forms in which the researchers can enter different study
parameters such as the study name, the number of participants, the number of sampling days and

1https://github.com/mad-lab-fau/carwatch
2https://svelte.dev/
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Figure 3.1: CARWatch framework applications during CAR assessment study.

the number of samples per day, the intended sampling times, etc. After all required information
was added, the website generates individual QR codes for each study participant and barcodes for
each saliva sample that can be printed out and attached to the sampling devices before they are
handed out to the participants.

The CARWatch app is designed as an objective verification tool for sampling times and to
increase the participants’ adherence to the sampling schedule. It can be installed on Android-based
smartphones through the Google Play Store. Android was chosen as platform since it is the
most widely spread mobile operating system [Sta19] and because of its open-source characteris-
tics [Ric23]. An iOS version of CARWatch is - while this thesis was written - under development.
For CAR assessments, each participant needs to use one smartphone on which the CARWatch
app is installed. For the initial setup of the app, the user needs to scan the QR code generated
by the webapp so that the study configuration is loaded. The app includes an alarm feature that
can be used to set a wake-up alarm for the study days. If no alarm is set, the participants need
to self-report their awakening to initiate sampling for that day. After awakening was reported
or the morning alarm was stopped, sample alarms that serve as sample collection reminders are
scheduled. Taking a sample must be verified by using the app to scan the barcode attached to
the sampling device. This procedure is repeated on each study day. Information about when
the participant woke up, took the samples, and which barcodes were scanned are stored inside
automatically generated log files. After the study was finished for the individual participant, the
log files can be sent to the researchers to be further analyzed.

Both the webapp or the Python package can be used to summarize multiple log files into a
single tabular file that contains the sampling information for all participants. The Python package
provides extended analysis options like merging the sampling time with information about the
cortisol measurements. Furthermore, it can also be used to generate the QR codes and barcodes.
As no major adjustments were made to the Python package in the course of this thesis, it will not
be considered further here.
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As part of this work, both the Android app and the webapp were enhanced with various new
features. The features added to the Android app include sleep data tracking, an introductory
slideshow, absolute alarm times, a light intensity logger, and a reworked alarm user interface. The
webapp was extended with several study configuration parameters to enable the configuration of
the new Android app features. Additionally, the generation of the study material was made more
customizable.

3.2 Webapp

The webapp consists of two components: the study configurator and the postprocessing tool. The
latter can be used to analyze the logs generated by the Android app. For this, all log files need to be
compressed into a ZIP file and uploaded to the postprocessing tool. In order for the postprocessing
to work properly, the log file names should not be changed as the filenames are parsed to extract
the participant identifiers (IDs), which is required for subsequent matching with other information.
The webapp then summarizes the log file data into a single CSV file which contains one row per
participant available in the dataset. Each row includes information about awakening time and
type of awakening (woken up by alarm or self-reported awakening) and the samples taken by the
participant (sampling times and scanned barcode) for every study day. In this way, researchers can
get an overview without having to extract the information manually from the log files.

The second component, the study configurator, consists of three HTML forms. In the first
form (Figure 3.2) general study parameters such as study name, number of sampling days, number
of participants, and participant IDs can be entered. Furthermore, the number of samples per day
can be specified and information on whether an additional sample should be collected just before
going to bed (also called evening sample) can be provided.

The second form (Figure 3.3) can be used to customize the layout of the barcode sheets that are
generated. This is especially useful if the barcodes should be printed onto pre-cut print label sheets
with specific dimensions. The user can choose between the two different formats A4 (international
standard) and ANSI letter (standard paper format in North America), set the number of barcodes
that are printed onto one page, and customize the distances between the barcodes. For each paper
format, a preset that is already adjusted to a specific label template is available. If the study does
not require barcodes the user can also choose to print only the IDs of each sample or just skip this
step.

In the final step (Figure 3.4), additional study parameters for the app configuration like an email
address to which the final log files will be sent, can be entered. Researchers can also decide if the
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Figure 3.2: Study configuration step 1.

Figure 3.3: Study configuration step 2.

participant ID should be included in the generated QR code, whether scanning the same barcode
twice is prohibited, and if additional sleep data should be collected from Google Fit throughout
the study. In this form, the researchers must also define the sampling schedule. To do this, they can
specify how many samples should be taken at a fixed time of the day. The remaining samples are
scheduled based on the participant’s awakening time. Depending on whether the sampling time is
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Figure 3.4: Study configuration step 3.

fixed, the researchers must either select a time or a time distance in minutes, which determines the
interval between the respective sample and the previous sample, except for the first sample, which
is scheduled based on the participant’s awakening. In the last part of the form, the print layout can
be customized similar to the barcode print layout customization by choosing the page format and
the number of rows and columns that are printed onto a single page. By clicking “Complete”, the
study material is generated and can be opened via the respective button.

An individual barcode is generated for each sample in the study, encoding an eight-digit
combination (Figure 3.5 shows the generated barcode sheet and Figure 3.6 a single barcode). The
first three digits identify the participant to whom the barcode belongs. The next two digits specify
the study day on which the sample should be taken, followed by two digits indicating the specific
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Figure 3.5: Barcodes generated by the webapp.

Figure 3.6: Generated barcode. The digits above the code are the barcode value. The label
below the barcode provides information about the participant and the sample to which the barcode
belongs.

sample of the day. The final digit serves as a control number according to the EAN-8 barcode
standard3. Following this encoding scheme, a barcode with a value of “00903028” 3.6 would
identify the second sample of participant “009”, collected on the third sample day.

The QR codes contain the study parameters that were entered in the form of the webapp. For
each participant, one QR code is generated. Depending on whether the participant ID is included,
each QR code is equal or belongs to a specific participant whose ID is displayed below the QR code
in the generated print preview. The QR code encodes a string that consists of multiple key:value
combinations that are separated by semicolons. The decoded string of the QR code depicted in
Figure 3.7 contains the following information:
”CARWATCH;N:Test;D:5;NP:50;SS:S0;T:0,30,15;A:1500;E:0;M:foo@bar.de;
FD:1;GF:1;V:1.1.0;PID:P_03”

3https://www.iso.org/standard/46143.html



3.2. WEBAPP 19

Figure 3.7: Generated QR code containing the study configuration. The participant ID that is
encoded in the QR code is displayed below the QR code.

• “CARWATCH” → serves as control variable to ensure the validity of the QR code

• “N:Test” → study name is “Test”

• “D:5” → samples should be taken over 5 days

• “NP:50” → 50 study participants

• “SS:S1” → the first sample ID is “S1”

• “T:0,30,15” → time distances between samples (samples S1, S2, and S3 should be taken 0 /
30 / 45min after awakening)

• “A:1500” → absolute times: one sample must be taken at 15:00

• “E:0” → no evening sample is required

• “M:foo@bar.de” → email address is “foo@bar.de”

• “FD:1” → scanning the same barcode twice is not allowed

• “GF:1” → enable the retrieval of Google Fit sleep data

• “V:1.1.0” → webapp version the QR code was generated with

• “PID:P_09” → participant ID is “P_09”

The QR codes and barcodes can be printed by using the print function that is supported by most
modern web browsers.
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3.3 App

The Android app offers functions to improve the sampling behavior of the participants, to monitor
the sampling, and to record relevant information. It was developed in Java using the Android
Java API framework4. The first Section of this Chapter describes the app’s user interface and the
functionalities of the different screens. In the second Section, the core features of the app are listed
and explained in more detail.

3.3.1 User Interface

The main app screen consists of a header, a content area, and a bottom navigation bar (see
Figure 3.8). The header contains the current screen name and a button that opens the menu
(Figure 3.9). The menu entry “Share logs” can be used to send the generated log files to the
researchers after the participant has completed the study. The “Delete logs” option deletes all log
and data files generated by the app and was added so that already exported files can be deleted if the
smartphone is used for several participants in succession. The entry must be clicked multiple times,
so that the log files are not deleted by mistake since it cannot be undone afterwards. With the “Kill
Alarms” option, the user can deactivate all active alarms. The “Reregister” option resets the stored
study configuration and opens a QR code scanner so that the user can load a new configuration.
Clicking “Show Tutorial”, restarts the tutorial slides of the slide show (see Section 3.3.2). The last
menu entry “Info” shows information about the current app version.

To navigate between the different screens, the user must click the respective entry of the bottom
navigation bar. The wake-up screen showed in Figure 3.8 lets the user report their awakening in
case no wake-up alarm was set, or the participant woke up prior to the alarm. Clicking the “Yes”
button initiates the morning procedure provided it has not been initiated earlier. If the first sample
must be taken immediately after awakening (sampling time distance in study configuration is 0),
the sampling procedure is started. Additionally, the remaining sample alarms for the day are set in
the background.

The alarm screen (Figure 3.10) provides an overview of the current alarms. The wake-up
alarm for the next morning can be set by clicking the top time. After the morning procedure was
started, the sample alarms are displayed below the wake-up alarm. Each alarm can be activated
and deactivated by clicking the switch button in front of the alarm time. For the sample alarms, the
label of the sample and the status of the sample are shown next to the alarm. A green checkmark
symbol indicates that the sample was already taken and verified by scanning the respective barcode.

4https://developer.android.com/
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Figure 3.8: Main screen of the app consisting of the header (highlighted red), the content area that
holds the content screens (highlighted green), and the bottom navigation bar (highlighted purple).
The content screen displayed is the wakeup screen.

Figure 3.9: Unfolded app menu.

The orange clock symbol shows that should have been taken already but the respective barcode
was not scanned yet. Additionally, a barcode symbol is displayed if a sample still needs to be
taken, regardless of when the sampling time is. Clicking the barcode symbol opens the barcode
scanner for the respective sample.

The bedtime screen (Figure 3.11) can be used to activate the bedtime mode by clicking the
“Yes” button which starts the light intensity recording (see Section 3.3.2). If the study includes an
evening sample, the respective sampling procedure is started. Additionally, the screen contains a
“Lights out” button that enables the dark mode.
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Figure 3.10: Alarm screen with wake-up alarm and sample alarms. Active alarms are highlighted
in orange. The symbols behind the alarm times indicate whether the sample was taken (checkmark),
should have been already taken (orange clock), or is scheduled for later (sand clock). The barcode
symbol can be used to open the barcode scanner.

Figure 3.11: Bedtime screen that can be used to initiate the evening procedure by clicking the
“Yes” button.
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3.3.2 Features

The CARWatch app features can be grouped into different categories. The wake-up alarms, sample
alarms, and the barcode scanner actively support the participant and serve as objective verification
for awakening and sampling times. The sleep data reader and the light intensity passively collect
information about the participant’s sleep and environment factors, and the slide show was designed
to help the user set up the app and provide an overview of how to use it. This Section describes the
features listed above, their functions and their architecture in more detail. The app also contains
other features that are not listed here as they were not considerably changed in the course of this
work.

Alarm
Alarms serve different purposes. The wake-up alarm follows the forced awakening strategy
(see Section 2.2) by waking the participant externally and thereby objectively determining the
awakening time, which is logged in the background. The sample alarms serve as reminders and
help the participants to adhere to the sampling schedule. Based on the study configuration the
wake-up alarm can also be a sample alarm given that the first sample must be taken immediately
after awakening. Unlike the awakening alarm, the sample alarm cannot be rescheduled. When an
alarm goes off, the user is alerted by an acoustical alarm signal and a visual notification which
can be clicked to stop the alarm (see Figure 3.12). Upon stopping a sample alarm, the barcode
scanner, shown in Figure 3.13, is automatically opened, and the participant has one minute to scan
the barcode attached to the sampling device. The sampling procedure is finished if the scanned
barcode is valid. If the participant does not manage to take the sample within the time window,
an additional reminder alarm is triggered. After the second alarm was stopped, the barcode
scanner can only be opened by going to the alarm screen and clicking the barcode symbol (see
Section 3.3.1).

Welcome slide show
The welcome slide show is automatically shown when the app is opened for the first time after
installation and serves as initial guide for the app. It contains multiple slides that are shown in
sequence and must be run through before the app can be used (see Figure 3.14). The slides are
embedded into a single screen which consists of the slide area, and a bottom bar (see Figure 3.15).
The dots in the center of the bottom bar indicate which slide is currently being displayed. The user
can advance the slides by either pressing the “Next” button or swiping left. Once the slideshow is
finished, it can always be restarted via the top right menu (see Section 3.3.1). In the first two slides
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(a) (b)

Figure 3.12: Alarm notification if display is locked (a) and if display is unlocked (b).

Figure 3.13: Scanner for sample device barcodes. The highlighted area must be pointed at the
barcode.

of the slideshow, the user is asked to give the required app permissions. If the permissions are
granted, the camera is opened and must be pointed at the study configuration QR code generated
by the webapp. After the study configuration was loaded, the user can advance to the next slide on
which they must enter their participant ID. This slide is skipped if the QR code already contained
the ID. If the researchers activated the Google Fit sleep data collection, the next slide contains
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a dialog in which the user is asked to log into their Google account and allow the app to access
their sleep data. The last few slides (referred to as tutorial slides) provide an overview of the app
structure and core functionalities. Each tutorial slide consists of a screenshot and text that explains
the respective screen and its elements (see Figure 3.15b). The tutorial slides can be skipped by
using the button in the bottom left corner and the user is also able to go to the previous slide by
swiping right. Finishing the slide show automatically redirects the user to the main screen.

The slide show is implemented as a single Android Activity. Figure 3.16 shows the relations of
the classes that belong to the slide show. The SlideShowActivity class creates the slide objects in
the private method initializeSlides(), holds the individual slides in the slides:List<WelcomeSlide>
attribute, and operates the slide navigation with nextSlide() and previousSlide(). A FragmentCon-
tainerView was used as layout element to embed the respective slide UI in the Activity. Based on
the parameters that are passed when starting the SlideShowActivity, it initially creates all slides,
only the setup slides, or only the tutorial slides. Most slides are objects of different classes which
differ in terms of layout and functionality embedded in the slide. To ensure that a slide class im-
plements all functions that are required by the SlideShowActivity, each slide class must implement
the WelcomeSlide interface. The abstract class BaseWelcomeSlide provides a default implementa-
tion of all functions of the WelcomeSlide interface and was added to reduce redundancies. The
BaseWelcomeSlide class also extends the Fragment class since the FragmentContainerView of
the SlideShowActivity can only display Fragment objects. In this way, each object of a class that
extends the BaseWelcomeSlide class is also a Fragment object which is why the BaseWelcomeS-
lide#getFragment():Fragment method just returns the object itself. In total, seven non-abstract
slide classes were implemented, each of which representing one or more slides in the slide show:

• WelcomeText - first slide, shows greeting text

• PermissionRequest - in this slide, the user is asked for the app permissions

• QrFragment - contains the QR code scanner

• ParticipantIdQuery - provides an input field for the participant ID

• GoogleFitAuthentication - lets the user log into their Google Fit account

• EndTutorialSlide - last slide, shows text

• TutorialSlide - class that can be used to create tutorial slides
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Welcome Text Slide

• shows greeting text

Permissions Slide

• explains permission usage
• asks user for permissions

next button

QR Code Scanner Slide

• lets user scan the QR code that
contains the study configuration

next button

Participant ID Slide

• lets user enter their participant ID

Participant ID
was found

Sleep
recording was

enabled

Google Fit Authentication Slide

• user can log in to their Google account
• user can give access to sleep data

next button

no

yes

no

yes

Tutorial Slides

• Show and explain app functionalities

Tutorial
slides are
finished

Finish-Tutorial Slide

Main Screen

yes

nonext button

skip button

next button

Figure 3.14: Slide sequence of slide show after app installation. If the slide show is started via the
“Reregister” menu entry, it starts with the QR code scanner slide and finished before the tutorial
slides would be shown. If the tutorial option in the menu is clicked, the slide show starts and
finishes with the tutorial slides.
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(a) (b)

Figure 3.15: (a) First slide that is shown when the app is opened for the first time. The green area
highlights the slide content, the purple area highlights the slide navigation bar. (b) Tutorial slide
that explains the alarm screen. Each tutorial slide has the same structure and contains a screenshot
of the feature that is explained as well as an explanatory text. The tutorial slides can be skipped
with the button in the lower left corner.

All slide objects that belong to the app tutorial are of the TutorialSlide class as they all have
the same layout consisting of an image, a headline, and a description. These three parameters
must be specified when creating a TutorialSlide object.
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Figure 3.16: Slide show classes and their relations. The diagram does not contain all class attributes
and methods, only those mentioned in the slide show Section.

Sleep data reader
The sleep data reader was added as an additional method for determining the awakening time. It
enabled the use of external wearables such as smartwatches or smart rings. The sleep data reader
is enabled if the respective option was selected in the study configuration and the user added
their Google account during the app setup. Additionally, the Google Fit App5 must be installed
and the user’s sleep data must have been transferred to the Google Fit App. To determine the
awakening time, the app fetches the user’s sleep data from the Google Fit API6. When starting the
app, a request is sent to the API to retrieve all sleep data from the past 24 hours. Upon successful
completion, the API returns one or more sessions that include all sleep phases within the specified
interval.

5https://www.google.com/intl/de_de/fit/
6https://developers.google.com/fit
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Each sleep phase has a start and end time and can be of one of the following types, which
describes the sleep stage:

• Awake (during sleep) - Waking phases during the sleep session

• Light sleep

• Deep sleep

• REM sleep

The end time of the last sleep phase (last phase of type “Light sleep”, “Deep sleep”, or “REM
sleep”) is logged as recorded wake up time in the main log-file each day. Additionally, a consecutive
CSV file that contains all sleep phases recorded during the study is maintained. This enables the
researchers to further analyze the participant’s sleep behavior. The CSV file has one row per sleep
phase, containing its start and end time as UNIX timestamp and written out and the sleep stage the
participant is in during the phase. Exemplary sleep data recording with a Samsung Galaxy Watch
4 is shown in Table 3.1. The Table shows the last five sleep phases detected before awakening.
The inferred awakening time of this example would be the end time of the second to last sleep
phase (05:55) as the last sleep phase is of stage “Awake (during sleep)”. The sleep data file is
exported along with the log-files.

Start date & time End date & time Sleep phase

29.05.2024 05:44 29.05.2024 05:45 Light sleep
29.05.2024 05:45 29.05.2024 05:46 REM sleep
29.05.2024 05:46 29.05.2024 05:47 Awake (during sleep)
29.05.2024 05:47 29.05.2024 05:55 Light sleep
29.05.2024 05:55 29.05.2024 06:00 Awake (during sleep)

Table 3.1: Exemplary sleep phases before awakening.

Light intensity logger
The light intensity logger was added to collect more information about the participants’ sleep
environment. As described in Section 2.1, the light level does influence the CAR and should there-
fore be controlled or at least monitored. This monitoring can be achieved using the light intensity
logger feature of the CARWatch app, which utilizes the Android sensor framework7 to access the

7https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview
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device’s built-in sensors. The framework allows the app to register so-called SensorEventListeners
that are automatically informed whenever the respective sensor value changes.

For monitoring the ambient light level, the classes LightIntensityLogger and ProximitySen-
sorListener were added. The LightIntensityLogger class implements the SensorEventListener
interface, enabling it to receive updates from the device’s light sensor. The light sensor measures
the ambient light level in lux (lx), and the LightIntensityLogger logs this data for further analysis.
The data is logged in an additional CSV file stored in the same directory as the regular log files,
with the following columns:

• “unix_time”: Contains the unix timestamp of when the light intensity was measured

• “date_time”: Contains the measuring date and time in a human-readable format

• “light_intensity_in_lx”: Measured light intensity in lx

• “is_object_near”: Contains “1” if the distance between the phone’s proximity sensor and the
nearest object is below a certain threshold and “0” if not.

The values in the last column are determined using the ProximitySensorListener class, which
is responsible for monitoring the device’s proximity sensor. The proximity sensor measures the
distance to an object, usually in centimeters. This data can be used to determine whether the
device is being held close to the user’s face or whether it is lying flat on a table, which would
invalidate the measured light intensity. The ProximitySensorListener class uses a threshold to
infer whether an object is close to the device. The threshold is determined based on the maximum
range of the proximity sensor, but is a maximum of 5 cm. Upon adding a new light intensity
entry to the data file, the LightIntensityLogger fetches the current “is_object_near” value from the
ProximitySensorListener. The light intensity logging can be activated or deactivated through the
webapp for the whole study. To start the actual recording in the app, the participant must click
the “Yes” button on the bedtime screen (see Section 3.3.1). The light levels are logged every 5

minutes throughout the night. Logging is stopped after the last sample that was scheduled based
on the awakening time was taken or upon awakening if no such sample was scheduled.

3.4 Evaluation

The study was evaluated using data from the TriASS, a research project conducted by the Trier
University under the direction of Prof. Dr. Gregor Domes. The CARWatch system was utilized to
verify sample and awakening times.
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3.4.1 Study design

Samples were collected at the participants’ homes. The study involved 30 participants aged 18 to
34, with an average of 25.6± 3.5 comprising 10 male participants, 19 female participants, and
1 diverse participant. The data collection period extended between 08.02.2024 and 18.03.2024.
Each participant provided data over 4 days, consisting of 2 non-workdays and 2 workdays, which
were not necessarily in sequence.

Researchers provided each participant with a Xiaomi Redmi 9AT smartphone running Android
10 (API level 29). The CARWatch application versions used were 2.3.1_20240209_1054-969c953
and 2.3.0_20240201_1712-57e3b2b. In addition to the sample collection, participants were
required to complete a questionnaire about their general life situation, mental and physical well-
being, and behavior in various situations.

Participants were free to wake up on their own or set an alarm clock. Saliva samples were
collected four times in the morning: immediately upon awakening and then at 30min, 45min, and
60min minutes post-awakening (Samples S1, S2, S3, and S4). In the following, these samples
are referred to as CAR samples. Additionally, two more samples were collected at 15:00 (S5) and
20:00 (S6), the fixed-time samples. Sleep data recordings were not included as no additional sleep
tracking devices were available.

Each day, participants filled out a protocol (see Figure 3.17) recording their sampling times
and answering four questions about their sleep and their expectations for the upcoming day.
Additionally, the participants were instructed to report their awakening in the app or use the in-built
alarm so that the sample alarms were scheduled and the barcodes on the saliva devices could be
scanned on sampling.

3.4.2 Data analysis

Prior to the analysis, the data was cleaned by filtering the cortisol samples for statistical outliers and
values outside the measurable range of 0.33-82.80 nmol L−1 as suggested by Stalder et al. [Sta16;
Sta22]. CAR samples and fixed-time samples were cleaned separately. For the CAR samples, only
sampling days that contained all samples S1 to S4 were included in the analysis.

Three reporting strategies were specified to compare different sampling time assessment
approaches: Self-report, App, and Naïve. The reporting strategy Self-report consisted of the
sampling times retrieved from the protocol. As no additional awakening times were assessed, the
first sampling time was used as the awakening time. For the App strategy, the timestamp of when
the awakening was reported in the App, or the awakening alarm timestamp was extracted as the
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Figure 3.17: Empty protocol card for a single day of sample collection.

awakening time. Sampling times were determined from the log entries of when the respective
saliva device barcode was scanned. For this, a Python script was used to scan the log files and
match the extracted timestamps to the respective samples. Afterwards, the samples were visually
scanned to check if sample IDs and times were matched correctly. For the Naïve strategy, the
awakening times from the Self-report strategy were used. If no awakening time was available
in the protocols, the awakening time from the App strategy was used. The sampling times were
determined based on the intended sampling intervals (awakening time + 0 / 30 / 45 / 60min, and
15:00 and 20:00 for S1, S2, S3, S4, S5, and S6 respectively). This strategy simulated the naïve
assumption of participants taking the samples perfectly according to the schedule without any
monitoring.
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A repeated measures ANOVA (rmANOVA) was performed to analyze the impact of sampling
inaccuracies on the CAR metrics AUCG and AUCI. Hereby, the reporting strategy was used as a
within-subject variable and AUCG and AUCI as dependent variables. Additionally, pairwise t-tests
were performed as post-hoc tests.

A mixed ANOVA was conducted to analyze the CAR on workdays and non-workdays, using
reporting strategy as a within-subject variable, the day type (workday or non-workday) as a
between-subject variable, and the CAR metrics as dependent variables. The mixed ANOVA was
performed on all samples as well as on a subset of samples which included samples of all employed
participants. The significance level was set to α = 0.05 and effect sizes were reported as η2p and
Hedges’ g for ANOVA and pairwise t-tests, respectively. All statistical analyses were performed
using the Python packages BioPsyKit [Ric21] and pingouin [Val18].

Regarding the sampling times, only samples of the reporting strategies App and Self-report
were analyzed. To show the difference between the intended sampling time and the actual sampling
time, the sampling delay (or delays) was computed. For the CAR samples, the sampling delay is
the difference between the reported sampling time and the sum of the reported awakening time (of
the respective reporting strategy) and the intended sampling interval. For the fixed-time samples,
the delay is the difference between the intended time and the actual sampling time. The following
groups were compared regarding their sampling delays:

• Reporting strategy App and reporting strategy Self-report

• Samples taken on workdays and samples taken on non-workdays

• Samples taken by employed participants and samples taken by students
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Results

A total of 30 participants took part in the study, with 6 being employed, one being in an appren-
ticeship, one being in an internship, and 22 being students. The ages of the participants ranged
from 18 to 34 years, with a mean age of 25.6± 3.5 years. The gender distribution was 19 female,
10 male, and 1 diverse participant.

In total, 720 samples were collected, comprising 480 CAR samples and 240 fixed-time samples
over 120 days. CAR samples and fixed-time samples were cleaned separately.

4.1 Data cleaning

For the CAR samples, 4 sampling days were excluded due to samples falling outside the measurable
range of 0.33-82.80 nmol

L and another 5 sampling days were excluded for containing samples that
deviated more than 3 standard deviations from the mean [Sta16; Sta22]. The same criteria were
applied to the fixed-time samples, resulting in 8 days excluded for measurements out of the
measurable range and 2 days excluded as samples deviated more than 3 standard deviations from
the mean.

Subsequently, samples without matching sampling times in either the protocol or the log files
were removed. fixed-time samples scanned outside a range of 180min before or after the scheduled
time were also excluded. Lastly, incomplete CAR measurements, where any of the samples S1 to
S4 were missing, were excluded.

After cleaning the data, the final dataset consisted of:

• CAR samples:

– 102 sampling days with 4 samples each for the reporting strategy Self-report
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– 108 sampling days with 4 samples each for the reporting strategy Naïve

– 91 sampling days with 4 samples each for the reporting strategy App

• Fixed-time samples:

– 95 sampling days with a total of 181 samples for the reporting strategy App

– 102 sampling days with a total of 199 samples for the reporting strategy Self-report

– 102 sampling days with a total of 200 samples for the reporting strategy Naïve

4.2 Analysis of CAR features

This Section presents the results of the analysis of the CAR features. Specifically, the features
AUCG and AUCI were analyzed. The first part examines the influence of the reporting type on
these features, while the second part explores the influence of the day type on the CAR.

4.2.1 CAR throughout the different reporting strategies

The rmANOVA revealed that the reporting strategy had a statistically significant effect on AUCG,
with F (2, 168) = 23.6, p < 0.05. The results of the paired t-test indicated a significant difference
with a very low effect size between the reporting strategies App and Naïve (corrected p < 0.05

and Hedges’ g = 0.05), as well as between the reporting strategies App and Self-report (corrected
p < 0.05 and Hedges’ g = 0.04). This is also illustrated in Figure 4.1a, which compares the AUCG

values of the different reporting types. The Figure shows that while the means of the reporting
strategies differ only slightly, there are often variations between individual AUCG values.

For AUCI, the F value was much lower (F (2, 168) = 4.3, p < 0.05) and the results of the
paired t-test suggested no significant differences between the individual reporting strategies, as all
corrected p-values were greater than 0.05. Unlike in the AUCG comparison, there are almost no
differences between the individual values, as shown in Figure 4.1b.

4.2.2 CAR on workdays compared to CAR on non-workdays

A mixed ANOVA was conducted to compare the CAR on non-weekdays and weekdays. The
analysis showed that the day type had no significant effect on either AUCG and AUCI with p > 0.05

for both respectively.
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Figure 4.1: AUCG (a) and AUCI (b) computed from sampling times using different reporting
strategies. The green lines between reporting strategies indicate an increase of AUCI values, red
lines indicate a decrease, gray lines indicate no change.

When focusing on employed participants, the mixed ANOVA still indicated no significant effect
on the AUCG (F (1, 16) = 0.835, p = 0.38). However, for AUCI, the results were F (1, 16) =

5.85, p = 0.03, indicating a significant effect of whether it was a workday or non-workday on
AUCI, with a partial eta squared η2p = 0.27.

The mean values and standard deviation over all samples of the reporting strategies App and
Self-report for the respective day type are presented in Table 4.1. As depicted in the Table, the
mean values for AUCI are particularly different between workdays and non-workdays. Additionally,
all values show a large standard deviation, indicating that there are substantial differences within
the groups of workdays and non-workdays.

4.3 Analysis of sampling times

4.3.1 Sampling times throughout the different reporting strategies

CAR samples
The delays between reported sampling times and naïve sampling times for the reporting strategies
App and Self-report are depicted in Figure 4.2. As there was no separate awakening time assessed,
the sampling delay of S1 for reporting strategy Self-report was assumed to be 0min for all sampling
days. The delays for the subsequent samples remained minimal, as most self-reported sampling
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Metric Workday Non-workday

AUCG 687.30 (219.80) 565.81 (261.11)
AUCI 256.76 (230.89) 21.50 (134.11)
Sample size (sampling days) 20 18

Table 4.1: AUCG and AUCI in nmol
L of employed participants on workdays and non-workdays

reported as median (Interquartile range (IQR)). Only sampling days of the reporting strategies
Self-report and App were analyzed.
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Figure 4.2: Sampling delays of individual participants grouped by the reporting strategies. The
Figure includes all CAR samples.

times were close to the schedule sampling times. The sample with the largest median delay across
all self-reported sampling times was S4 with a delay of 0.66min. Figure 4.2 shows that while
there were some delays for samples S2 and S3, almost none exceeded 5min.

For the reporting strategy App, sampling delays were slightly higher (see Table 4.2 median
and IQR). Unlike the delays of reporting strategy Self-report, which were nearly negligible, the
app-reported delays were mostly positive and included more instances where delays exceeded
5min. The largest delay of app-reported sampling times was the one of S3 with a median delay of
more than 1.5min. The IQR of delays of the App reporting strategies were also higher, with the
largest one being the one from S3 (1.58min).

Reporting strategy S1 S2 S3 S4

Self-report 0.0 (0.00) 0.0 (0.00) 0.00 (0.00) 0.00 (1.00)
App 0.3 (0.33) 0.5 (0.58) 0.95 (1.58) 1.05 (1.49)

Table 4.2: Sampling delays of CAR samples grouped by the reporting strategies; values are reported
as median (IQR) in minutes
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Reporting strategy S5 S6

Self-report 0.00 (1.00) 0.00 (1.00)
App 1.05 (0.92) 0.95 (1.03)

Table 4.3: Sampling delays of fixed-time samples grouped by the reporting strategies; values are
reported as median (IQR) in minutes.

Fixed-time samples
Outliers were more pronounced in the fixed-time samples compared to the CAR samples for both
reporting strategies, with some samples exhibiting delays of over 1 hour, as shown in Figure 4.3.
However, since most samples were taken close to the sampling schedule, the mean sampling delay
was very low. As depicted in the histogram in Figure 4.4, more than 60% had a maximum delay
of 1min for the reporting strategy Self-report. For the reporting strategy App, approximately 20%
of samples had a maximum delay of 1min, and over 50% had a delay of 1 to 2min. The resulting
median and IQR values are shown in Table 4.3.

4.3.2 Sampling delays on workdays compared to sampling delays on non-
workdays

The overall difference between sampling delays on workdays and non-workdays for CAR samples
was very low (Table 4.4). As depicted in Figure 4.5, sampling delays only differed in the outliers,
with more negative outliers on non-workdays compared to workdays. On non-workdays, the
median delay increased from S1 to S4, while on workdays, the median delay reached its maximum
at S3 and then slightly decreased again.

The median and IQR values for sampling time delays of the CAR samples are very similar
when comparing within the same reporting strategy across different day types (Table 4.5). For the
reporting strategy App consistent median delays and IQRs for all sampling times were captured.
Similarly, the median sampling delays for the reporting strategy Self-report were 0 for all samples
with negligible IQR values, indicating no considerable variation in sampling delays between
workdays and non-workdays within each reporting strategy.

Similar results were obtained for the absolute samples, which also only showed small differences
between the day types and within the reporting strategies (see Table 4.6).

A greater difference was observed after further dividing the samples of the individual day types
into the two subgroups employed (containing samples of participants who are in employment or
training) and student (containing samples of participants who are studying). Table 4.7 indicates
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Figure 4.3: Sampling delays of individual participants grouped by the reporting strategies. The
Figure includes all fixed-time samples.
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Figure 4.4: Distribution of sampling delays of reporting strategies Self-report and App for fixed-
time samples.

Day type S1 S2 S3 S4

Workday 0.00 (0.29) 0.29 (0.79) 0.37 (1.36) 0.43 (1.16)
Non-workday 0.00 (0.25) 0.20 (0.62) 0.43 (1.07) 0.52 (1.30)

Table 4.4: Sampling delays of CAR samples grouped by the day type; values are reported as
median (IQR) in minutes

that for the reporting strategy Self-report, the delays across all samples (S1 to S4) on both workdays
and non-workdays were minimal for both participant groups as the median delay was consistently
at 0min, with low IQR values.
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Figure 4.5: Sampling delays of individual participants grouped by the day type. The Figure
includes all CAR samples of the reporting strategies App and Self-report.

Day type Reporting strategy S1 S2 S3 S4

Workday App 0.31 (0.39) 0.48 (0.51) 0.97 (1.53) 1.03 (1.41)
Workday Self-report 0.00 (0.00) 0.00 (0.00) 0.00 (1.00) 0.00 (1.00)
Non-workday App 0.28 (0.31) 0.50 (0.58) 0.93 (1.73) 1.05 (1.57)
Non-workday Self-report 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.75)

Table 4.5: Sampling delays of CAR samples grouped by day type and reporting strategy; values
are reported as median (IQR) in minutes

Day type Reporting strategy S5 S6

Workday App 1.09 (1.13) 0.83 (0.85)
Non-workday App 1.02 (0.8) 1.18 (1.18)
Workday Self-report 0.0 (2.0) 0.0 (1.0)
Non-workday Self-report 0.0 (1.0) 0.0 (1.5)

Table 4.6: Sampling delays of fixed samples grouped by day type and reporting strategy; values
are reported as median (IQR) in minutes
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Day type Profession Reporting strategy S1 S2 S3 S4

Workday Employed App 0.48 (0.45) 0.37 (0.7) 0.57 (0.87) 1.1 (0.98)
Workday Employed Self-report 0.0 (0.0) 0.0 (0.5) 0.0 (1.5) 0.0 (1.5)
Workday Student App 0.27 (0.27) 0.46 (0.39) 0.88 (1.47) 0.73 (1.4)
Workday Student Self-report 0.0 (0.0) 0.0 (0.0) 0.0 (0.75) 0.0 (0.75)
Non-workday Employed App 0.23 (0.15) 0.5 (0.47) 1.05 (1.08) 2.37 (1.87)
Non-workday Employed Self-report 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.5)
Non-workday Student App 0.33 (0.32) 0.49 (0.55) 0.93 (1.85) 0.89 (1.03)
Non-workday Student Self-report 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.5)

Table 4.7: Sampling delays of CAR samples grouped by the day type, profession, and reporting
strategy; values are reported as median (IQR) in minutes
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Figure 4.6: Sampling delays of employed participants grouped by the day type. Only samples of
the reporting strategy App are included.

Regarding the reporting strategy App, time delays for employed participants on non-workdays
were higher and also showed a stronger increase compared to the time delays on workdays. The
longest median delay and largest IQR were observed for S4, with a delay of 2.37min and an IQR
of 1.87min. In contrast, on workdays, the median delay for the same group started at 0.48min for
S1 and increased to 1.1min for S4, showing a more moderate rise. The delay times for S3 and S4
on workdays were only half of those on non-workdays as shown in Figure 4.6.

For students, the delays were also higher on non-workdays compared to workdays, but the
difference was less pronounced than for employed participants. On non-workdays, the median
delay for students rose from 0.33min for S1 to 0.89min for S4, while on workdays, it ranged from
0.27min for S1 to 0.73min for S4.
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In summary, the analysis highlights a difference in sampling delays between employed par-
ticipants and students regarding the reporting strategy App on non-workdays. The delays for the
reporting strategy Self-report, however, were minimal regardless of the day type or participant
profession.

The results for samples S5 and S6 were similar to those observed for the earlier samples. For
the reporting strategy Self-report, there was almost no delay in sampling times, except for S6 for
employed participants on non-workdays. This instance marked the largest delay for the reporting
strategy Self-report, with a median delay of 1.0min and an IQR of 5.75min. For the reporting
strategy App, delays for fixed-time samples were slightly higher compared to the CAR samples.
The longest median delay and largest IQR were observed for S6 on non-workdays for employed
participants, with a median delay of 1.85min and an IQR of 2.98min. The median delays and
IQRs for the reporting strategy App for samples S5 and S6 were somewhat higher than those
observed for the CAR samples. Although the App reporting strategy showed slightly higher delays
for fixed time samples (S5 and S6) compared to CAR samples, the delays were still minimal overall.





Chapter 5

Discussion

The following enhancements were made in the scope of this thesis. The sleep data reader can
be used to integrate external sleep recording devices. This is especially useful if participants do
not set an alarm or wake up prior to the set alarm, as it provides an objective method to record
the awakening time so that the self-reported awakening time can be verified. Additionally, it can
be used to analyze the participants’ sleep quality, which can have an unwanted influence on the
CAR [Las08]. However, the sleep data reader relies on the accuracy of the external device, which
should be considered in studies utilizing this feature.

The light intensity logger was added to monitor the ambient light level, which is considered
a potential variable that can lead to confounding [Sta16]. Unlike the sleep data reader, the light
intensity logger uses the smartphone’s internal sensors. Therefore, researchers should consider
the accuracy of these sensors, as they can vary between different smartphones. Furthermore, the
participants should be instructed on how to activate the light intensity logger before going to bed
and that the light sensor should not be covered by any objects.

The welcome slideshow simplifies the first steps that are done after the installation of the
Android app and serves as an introduction to the app. Although it does not directly improve the
objectiveness of sampling and awakening time or the monitoring of covariates, it could prevent
user errors.

The rework of the alarm overview increased its clarity by including all alarms and showing
additional information on the alarms with the help of the symbols next to the alarms. Although
not examined in the scope of this thesis, this can improve the participants’ sampling behavior as
they now always have access to the sampling times in a single app screen.

Before discussing the data collected in the TriASS, some issues regarding the study design
should be mentioned. Firstly, there was no objective assessment of awakening time, as participants
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were not instructed to use the awakening alarm provided by the app or any other objective verifica-
tion method for awakening time. They were also not instructed to record their awakening time
separately from the sampling times, which could have led to errors. When comparing the delays
of this study to those measured in the proof-of-concept study for the CARWatch app [Ric23], a
noticeable difference in S1 delays was observed. In Richer’s study, the self-reported S1 delay and
S1 delay obtained from the app were approximately 1min, while in this study, the S1 delays were
0 and 0.3min. Therefore, awakening times should be measured objectively or at least reported
separately from sampling times. A few issues with the app, such as sample alarms not going off,
were also identified. This resulted in missing sampling times in the app logs. Consequently, out of
the 111 days remaining after excluding cortisol outliers, 20 more days had to be excluded because
not all CAR samples had matching timestamps in the app logs.

Overall, the results indicated that sampling adherence was generally high, and sampling delays
were low across both reporting strategies and for both CAR and fixed-time samples. However,
participants tended to slightly overestimate their adherence to the sampling schedule, consistent
with findings by Broderick et al. [Bro04]. This overestimation was indicated by computed sampling
delays for self-reported sampling being smaller than those for the reporting strategy App. These
small differences align with the findings of Richer et al. [Ric23]. In relation to compliance
windows used in existing research (e.g., 15min [Bro04] or 10min [Kud07]) the median sampling
delay in this study was rather low, with almost no sampling day having CAR samples taken outside
these windows. This consistency is also evident when examining the statistical impact of the
reporting strategies on the computed CAR curve. The findings of the rmANOVA revealed that the
reporting strategy had a significant, though low, impact on the computed AUCG and AUCI. Notably,
pairwise test results indicated no significant difference between the reporting strategies Naïve and
Self-report, but a significant difference between the strategies App and Self-report, underscoring
the assumption that participants tend to overestimate their adherence and that sampling times
should be assessed objectively as a supplement to self-reported times.

Contrary to the literature [Kun04; Sch04], the type of day (workday or non-workday) had no
statistically significant effect on the CAR, possibly influenced by the participants’ employment
status, as most were studying at the time of assessment. However, when performing the same
analysis on employed participants only, a significant workday-non-workday difference in the AUCI

was found, as shown by the results of the mixed ANOVA. This difference was visible in the median
values for the respective day types, which were much lower on non-workdays than on workdays.
Nonetheless, the high IQR values indicate a wide spread of values, which could have been affected
by the small sample size, as complete measurements were available for only 10 workdays and 9
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non-workdays. Similar findings were observed for the sampling times. While the differences in
sampling delays between non-workdays and workdays for all participants were low, the differences
for employed participants were more pronounced and increased throughout the morning. This
could be because workday mornings are more stressful, leaving less time available, which causes
samples to be postponed. As already mentioned for the CAR curve, these results could have
been influenced by the small sample size, as only a few complete sampling days were available
for employed participants. However, even these larger sampling delays and differences between
app-reported sampling intervals and self-reported sampling intervals were probably too low to
impact the resulting CAR metrics.

In summary, the study faced a few design and app-related problems that could have affected
the results, such as the lack of objective awakening time assessment, app-related issues, and a
small sample size. Despite these issues, the overall adherence to the sampling schedule was high,
with minimal delays. However, participants tended to overestimate their adherence, highlighting
the need for objective assessment methods. The type of day had no significant impact on the CAR
for most participants, but differences were observed for employed participants, possibly due to
the stress of workday mornings. Overall, the CARWatch framework serves as a supportive tool
for CAR assessments. Though improvements in robustness are still needed, the verification of
sampling times works well, and samples with a large difference between the self-reported and
app-obtained sampling times can be sorted out. However, when conducting a study, it is essential
to either include awakening by alarm or an additional sensor that measures awakening time, as
awakening time cannot be objectively verified through CARWatch by solely using the self-report
functionality.





Chapter 6

Conclusion & Outlook

As part of this work, the CARWatch framework was enhanced with several functionalities. The
sleep data reader was added as an additional objective verification method for awakening times
and can further be used to measure the participant’s sleep behavior. The light intensity logger
was added to measure the light level a participant is exposed to in the morning, as it is a potential
confounding that can have an unwanted effect on the CAR. Reworked Android app screens and an
Android app introduction were implemented to improve the participant’s sampling behavior and
the user experience. Furthermore, smaller adjustments were made to increase the customizability
and flexibility of the framework.

The CARWatch framework served as an objective sampling time verification tool in the TriASS.
The study data were examined to uncover participants’ sampling behavior and its impact on the
derived CAR curve. Moreover, the analysis included differences in the CAR and sampling patterns
between workdays and non-workdays. The general sampling behavior was highly consistent with
minimal differences between self-reported sampling times and sampling times recorded by the
Android app. Participants also showed a high sampling adherence with minimal delays between
scheduled sampling times and recorded sampling times. Differences between non-workdays
and workdays for AUCG, AUCI, and sampling times were minimal. Further analyzing separate
subgroups revealed an increased CAR and longer sampling delays on non-workdays for employed
participants. However, only 6 employees participated in the study, which decreases the significance
of the findings. Therefore, future studies should further investigate the differences in the CAR
between groups at different educational phases, especially focusing on the different day types and
stress levels of subgroups. Overall, the results showed that CARWatch is capable of supporting
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CAR studies as an objective verification tool that can easily be integrated into and adjusted
to the study. Additionally, CARWatch can be downloaded for free, making it economically valid
even for large-scale studies.

Nevertheless, some improvements would be beneficial for future studies. These include im-
proving the robustness to reduce the proportion of missing sampling times and adding functionality
to embed supplementary questionnaires so that participant and sampling day-related data can be
assessed directly through the CARWatch Android app. The former could be directly integrated into
the welcome slideshow. The latter could include questions regarding sleep quality and expectations
for the day ahead, similar to the protocol questions used in the TriASS, as these are covariates
of the CAR [Sta16]. Additionally, the awakening time should be assessed independently if the
awakening was manually reported by the participant and is not measured by an external device.

In summary, the CARWatch framework, which has already proven to be a reliable objective
verification tool for sampling times, was extended by new data collection methods. However, these
methods still need to be evaluated and additional improvements might increase the framework’s
benefit for CAR studies. Furthermore, the findings of this thesis should be further investigated in
future studies.
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Appendix A

Acronyms

CAR cortisol awakening response

PSG polysomnography

HPA hypothalamic-pituitary-adrenocortical

ANS autonomic nervous system

CVD cardiovascular disease

AUCG integrated area under the curve

AUCI increase of cortisol from the level recorded on waking

EEG electroencephalography

EOG electrooculography

EMG electromyography

ECG electrocardiography

TriASS Trier Everyday stress study

IBI interbeat interval

HTML Hypertext Markup Language

ID identifier
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rmANOVA repeated measures ANOVA

IQR Interquartile range
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