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Übersicht

Herz-Kreislauf-Erkrankungen (CVD) sind weltweit die häufigste Todesursache. Das unterstre-
icht die Notwendigkeit einer effektiven Erhebung herzbezogener Vitalparameter wie Herzschlag
und Herzfrequenz zur Früherkennung. Die derzeitige Goldstandard-Methode, das Elektrokardio-
gramm (EKG), erfordert einen direkten Kontakt mit Patienten, was in Fällen wie beispielsweise
infektiösen Patienten oder Brandopfern nicht praktikabel ist. Daher arbeitet die Wissenschaft an
Alternativen, die ohne direkten Kontakt zum Körper auskommen. Ein vielversprechender Ansatz
stellt hierbei die Verwendung von RADAR-Sensoren zur kontaktlosen Erkennung von Herzschlä-
gen dar. Der RADAR-Sensor misst die Veränderungen im empfangenen RADAR-Signal, diese
werden unter anderem durch die Bewegungen des Brustkorbs aufgrund des Herzschlags verur-
sacht. Um die einzelnen Herzschläge aus dem RADAR-Signal zu extrahieren, können verschiedene
Ansätze angewandt werden, darunter Methoden der Zeit-Frequenz-Analyse wie Kurzzeit Fourier
Transformation und in jüngerer Zeit auch Modelle des maschinellen Lernens. Diese Methoden
verwenden jedoch häufig Datensätze mit geringer Bewegung der Probanden. Das erleichtert zwar
die Erkennung von Herzschlägen, macht die Ergebnisse durch Minimierung von Artefakten allerd-
ings weniger vergleichbar mit reelen Szenarien in denen Patienten Körperbewegungen aufweisen.
Um eine brauchbare Alternative zu Methoden wie dem EKG zu sein, müssen weitere Forschungen
durchgeführt werden, sodass bewertet werden kann, wie RADAR-Daten verarbeitet und die Mod-
elle trainiert werden müssen, damit Herzschläge auch bei Vorhandensein von größeren Körper-
bewegungen erkannt werden. In der hier vorliegenden Arbeit werden zwei Modellarchitekturen
zur Verbesserung der Nutzung von RADAR-Daten zur Erkennung von Herzschlägen verglichen.
Die erste Architektur verwendet long short-term memory cells (LSTM), die die gefilterten in-
phase (I) und quadrature (Q)-Komponente sowie den Angle, die Power und das Envelope des
RADAR-Signals verarbeiten. Beim zweiten Ansatz wird das RADAR-Signal zunächst mithilfe
von kontinuierlicher Wavelet Transformation (CWT) verarbeitet, um ein Scalogramm zu erstellen,
das direkt an das UNet-Modell übergeben werden kann. Beide Modelle wurden mit jeweils drei
Datensätzen trainiert und getestet. Der erste Datensatz mit Aufnahmen von 22 Personen im Liegen
zeigte kaum Artefakte durch große Körperbewegungen. Der zweite Datensatz mit 110 Probanden
enthielt erhebliche Artefakte aufgrund von Bewegungen des Körpers. Studien bestätigten, dass
die Kombination eines Datensatzes mit einer gemischten Menge an Artefakten die Leistung des
Modells verbessern kann. Aus diesem Grund wurden beide Datensätze für den dritten Datensatz
kombiniert, um die Auswirkungen gemischter Ausprägungen von Artefakten zu bewerten. Die
Ergebnisse zeigen, dass die rechenintensiven continuous wavelet transform (CWT)-verarbeiteten
RADAR-Daten mit der UNet-Architektur die LSTM-Modelle sowohl bei Daten mit geringer als
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auch mit hoher Menge an Artefakten übertreffen. Der kombinierte Datensatz hat die Leistung
des UNet-Modells nicht verbessert, und das LSTM-Modell konnte Herzschläge in Daten mit Kör-
perbewegungen kaum erkennen. Insgesamt zeigt diese Arbeit das Potenzial der Kombination der
CWT mit einer UNet-Architektur zur Verbesserung der Herzschlagerkennung aus RADAR-Daten.
Trotz der hier vorgestellten Ergebnisse sind weitere Forschungen unerlässlich, um die Toleranz
für größere Körperbewegungen oder Artefakte zu verbessern um diese kontaktlose Methode zu
einer Alternative für EKG-Messungen zu machen.
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Abstract

Cardiovascular diseases (CVD) are the leading cause of death worldwide, highlighting the need
for effective tracking of heart-related vital signs, such as heart beats (HBs) and instantaneous
heart rate (IHR), for early detection. The current gold standard method, electrocardiogram (ECG),
requires direct contact with patients, which is sometimes impractical, like in cases of infectious
patients or burn victims. As a result, researchers are exploring non-contact alternatives that do
not require direct attachment of sensors to the body. One promising approach researchers have
focused on is using radio detection and ranging (RADAR) sensors to detect HBs contactless. The
RADAR sensor measures changes in received RADAR signals caused by chest movements due
to the HB. For extracting the individual HBs from that RADAR signal, various approaches have
been employed, including time-frequency analysis such as short-time fourier transform (STFT)
and, more recently, machine learning (ML) models. However, these methods often use datasets
with restricted subject movements, making it easier to detect HBs by minimizing artifacts caused
by random large body movements (RLBM). In order to become a viable alternative to methods
such as ECG, further research has to be conducted in order to evaluate how RADAR data needs
to be processed and how models need to be trained to detect HBs even in the presence of RLBM.
This thesis compares two model architectures to enhance the use of RADAR data to detect HBs.
The first architecture utilizes LSTM cells, processing the filtered I, and Q component as well as
the Angle, Power, and Envelope of the RADAR signal. The second approach first transforms the
RADAR signal using CWT to create a scalogram that can be used as input for the second part
of the approach - a UNet based model. Both models were trained and tested on three datasets.
The first dataset, with recordings from 22 subjects lying down, had low noise levels. The second
dataset with 110 subjects included a higher amount noise from RLBM. Studies confirmed that
combining a dataset with less noisy and more noisy data can improve the model’s performance.
For this reason, both datasets were combined for the third dataset to evaluate the impact of mixed
noise levels. The results indicate that the computationally intensive CWT-processed RADAR
data with the UNet architecture outperforms the LSTM models in both low and high noise data.
The combined dataset did not enhance the UNet model’s performance, and the LSTM model
failed to detect HBs in noisy data in most of the cases. Overall, this thesis shows the potential
of combining CWT with a UNet architecture for improving HB detection from RADAR data.
Despite the results presented here, further research is essential to enhance the tolerance for RLBM
to make this contactless method a viable alternative to ECG measurements.
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Chapter 1

Introduction

According to the World Heart Federation CVD are currently the leading cause of death globally,
with a death rate of 51% in 2019 [Gai23]. This emphasizes the urgent need for innovative solu-
tions to detect CVD at an early stage [Fed24; Gai23]. Vital signs such as HBs and blood pressure
play an important role in diagnosing heart-related health issues [Pon19; Sch03; Yug23; Ele96].
While various methods exist to measure HBs, the current gold standard is the ECG [Sam16; Str22;
De 12]. ECGs are a contact-based HB measurement that detects the heart’s electrical activity pro-
duced during each heart cycle using multiple electrodes placed at the chest. Apart from the fact
that constantly wearing the electrodes during the measurement can be perceived as uncomfortable
and infeasible, the requirement for direct contact with the patient makes the ECG not an appro-
priate method for the use outside of a medical setting [Ele96].
RADAR-based methods offer an alternative to ECG for remote HB monitoring in various environ-
ments, such as at home, in vehicles, or clinical settings by eliminating the need for direct contact
and sensor application [Mal20; Ric20; El 23; Yen22; Mur22]. RADAR-based technologies mea-
sure the HB by sending electromagnetic waves that hit the body and are reflected back to the
RADAR device. When the heart beats, the chest moves slightly, causing small changes in the
reflected signals which are measured by the RADAR and analyzed to detect the HB [Li13].
However, movements of the body, such as breathing or other activities, can lead to interference or
artifacts in the measured signals, making it difficult to accurately record the HB [Che21]. For this
reason, existing literature mainly focused on data where participants are in a stationary position,
on one hand, decreasing the noise, but on the other hand providing limited exposure to real-world
scenarios [Mog17; Shi22; Li17]. To become a viable alternative to ECG, RADAR-based methods
must reliably detect the HB even in the presence of noise [Iwa21].



2 CHAPTER 1. INTRODUCTION

For this reason, the thesis presented here not only compares different ML approaches to examine
the most suitable one for stationary subject data, but also includes one dataset containing noise,
in order to evaluate the possibility of noise reduction and HB detection.
In detail, two approaches for detecting HBs from RADAR data in the two datasets and a combined
version of both datasets were compared. Depending on the approach used, different preprocess-
ing pipelines were utilized.
The first approach involves a LSTM artificial neural network (ANN) architecture for the used
RADAR data. The second approach employs a time-frequency-based method, where the RADAR
signal is additionally transformed using CWT and processed by a UNet-based architecture [Ron15]
to detect HBs. Both architectures were used for both datasets separately, and also on a combined
version of the datasets. By comparing the performance of these approaches under various condi-
tions, this research aims to identify the best-performing method for HB detection using RADAR
data. Additionally, this thesis investigates the generalizability of models trained on less noisy data
and their ability to predict HBs from datasets with higher levels of RLBM. Therefore, this thesis
seeks to enhance the understanding of RADAR-based HB detection methods and their potential
applications in real-world settings. By addressing the challenges posed by noise and movement in
RADAR data, the findings from this thesis may contribute to improve the robustness and accuracy
of systems for non-contact HB monitoring, with implications for early detection and prevention
of cardiovascular diseases.

In order to guide through the details of this thesis, it is structured as follows: Chapter 2 explains the
cardiac physiology, the background of the used processing steps for the two different approaches,
and the fundamentals of the used architectures of the ML models. Chapter 3 presents existing re-
search relevant to this thesis in order to provide an overview of current advancements in RADAR
based HB detection. Chapter 4 describes the used datasets, the data processing, and the evaluation
methods for the used architectures as well as the computational settings in detail. The results and
individual evaluations, as well as discussions of all used approaches, are presented in Chapter 5.
Finally, Chapter 6 summarizes the findings and gives an outlook for future improvements.



Chapter 2

Background

2.1 Physiology of the cardiovascular system

The human cardiovascular system, consisting of the heart and blood vessels, is responsible for cir-
culating blood throughout the body. It includes the heart, arteries, veins, and capillaries [Opi04].
The heart, located slightly to the left behind the sternum, serves as the system’s central compo-
nent. It is defined by two main loops managed by specialized cardiac muscle cells: (1) systemic
circulation, which delivers oxygenated blood to all organs, and (2) pulmonary circulation, which
oxygenates deoxygenated blood [Opi04; Kat10]. As depicted in Figure 2.1, the heart is divided
in four separate chambers with four valves that ensure unidirectional blood flow. The right atrium
receives deoxygenated blood from the body and passes it through the tricuspid valve to the right
ventricle, which pumps it through the pulmonary valve and pulmonary arteries to the lungs for
oxygenation. The left atrium then receives oxygenated blood from the lungs via the pulmonary
veins and pumps it through the mitral valve to the left ventricle, which distributes it through the
aortic valve into the aorta and throughout the body [Opi04; Kat10].

2.1.1 Heart beat and the cardiac electrical conduction system

The HB, is produced by the rhythmic contraction and relaxation of the heart muscle, which is
essential for pumping blood and is regulated by the heart’s electrical conduction system to ensure
coordinated beating [Ele96]. The sinoatrial node, located at the top of the right atrium within the
cardiac septum, acts as the heart’s natural pacemaker, generating electrical impulses that initiate
each heartbeat. The atrioventricular node, lying at the junction between the atria and ventricles
in the cardiac septum, receives these impulses from the sinoatrial node and delays them slightly
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Figure 2.1: Heart anatomy and physiology. Representation of heart-related anatomical com-
ponents for the enrichment of the blood with oxygen, the production of healthy heartbeat and
the forwarding of the oxygen-rich blood for distribution throughout the body. Arrows represent
the healthy blood flow through the heart. RA = Right Atrium, RV = Right Ventricle, LA = Left
Atrium, LV = Left ventricle, Ao = Aorta. Graphic created in BioRender.com.

to allow the atria to contract and empty blood into the ventricles. The Bundle of His transmits
the impulse from the atrioventricular node along the cardiac septum to the ventricles, and the
Purkinje fibers, a network of fibers spread throughout the ventricles, ensure rapid and coordinated
ventricular contraction [Ele96; Unu14; Maa23; Nik12].

2.1.2 Heart sounds

The HB is typically heard as two heart sounds (HSs), which are generated by the mechanical
activities of the heart, specifically the opening and closing of the heart valves and the resultant
blood flow [Ski22; Fel90]. The primary HS is typically differentiated into two phases, the first
HS (S1), is often described as “lub” and is produced by the closure of the atrioventricular valves,
which include the mitral and tricuspid valves (Figure 2.1). When the ventricles contract (begin-
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ning of systole), the pressure rises, causing the mitral and tricuspid valves to close to prevent
backflow into the atria. This sudden closure creates vibrations that produce the S1 sound. S1
is a low-pitched, slightly prolonged sound. The second HS (S2), often described as “dub”, is
produced by the closure of the semilunar valves, which include the aortic and pulmonary valves
(Figure 2.1). After the ventricles have ejected blood into the aorta and pulmonary artery, they
begin to relax (beginning of diastole), the decrease in pressure causes the aortic and pulmonary
valves to close, creating the S2 sound, which is a higher-pitched, shorter sound when compared
to the S1 HS. Next to these two phases, there can also be a third and a fourth HS (S3 and S4),
which are often pathologic. The third HS (S3) is a low-pitched sound that occurs just after S2
during the rapid filling phase of the ventricles in early diastole. S3 is produced by the rapid flow
of blood from the atria into the ventricles, causing vibrations of the ventricular walls. S3 can be
normal in children and young adults but may indicate heart failure or volume overload in older
adults. The fourth HS (S4) is a low-pitched sound that occurs just before S1 during the atrial
contraction phase of late diastole. S4 is produced by the atria contracting forcefully to push blood
into a stiff or hypertrophic ventricle, causing vibrations. S4 is often associated with conditions
that increase ventricular stiffness, such as hypertension, aortic stenosis, or ischemic heart disease
[Ski22; Fel90].

2.2 Contact-based applications for HS and HB measurement

2.2.1 Electrocardiogram
In most clinical settings, physicians use the non-invasive ECG as a graphical representation of
the electrical activity of the heart over a period of time [Ele96]. It is initiated by the sinoatrial
node and leads to the contraction of the heart’s atrias and ventricles via a series of successive
stimulus transmissions along the cardiac septum (see Section 2.1.1) [Unu14; Maa23; Nik12]. In
order to measure these impulses, electrodes are placed at the chest and the limbs. While two
electrodes can determine the heart’s rhythm which can then be used to derive the HBs and heart
rate (HR), twelve leads are typically used since they provide more comprehensive information
ensuring for example diagnosis of cardiac arrhythmias and heart failure [Khu14]. These leads
include three bipolar limb leads (I, II, III) introduced by Einthoven, three augmented unipolar
limb leads (aVR, aVL, and aVF) developed by Goldberger, and six unipolar chest leads (V1-V6)
established by Wilson [Lut19; Hou19; Ger08]. Proper electrode placement is crucial for accurate
and detailed data collection and is done by trained medical personnel [Ele96]. For less detailed
applications, such as measuring the HBs the accuracy of the positioning is less relevant. Once
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in place, the electrodes record the heart’s electrical signals leading to an ECG signal (Figure
2.2). The interpretation of the ECG is separated into waves, intervals, and complexes. The P-

Figure 2.2: ECG Signal illustration. Depiction of the main components of an ECG including
P-wave (atrial depolarization), QRS complex (Q-wave, R-wave and S-wave - ventricular depolar-
ization) and T-wave (ventricular repolarization)[El 16].

wave represents the atrial depolarization (Figure 2.2), whereas the QRS complex illustrates the
ventricular depolarization (consisting of the Q-wave, R-wave, and S-wave). The HR is calculated
by measuring the intervals between R-waves (R-R interval). A normal resting HR lies between 60-
80 beats per minute (BPM). The T-wave represents ventricular repolarization. The intervals refer
to the time past from one wave or complex to another. The PR interval is the time between the
start of atrial depolarization (P-wave) and the start of ventricular depolarization (QRS complex).
The QT interval represents the total time for ventricular depolarization and repolarization and the
ST segment is the period between ventricular depolarization and repolarization [Kun00; Abd21;
Gar14] (Figure 2.2). The analysis of differing times or shapes of waves and intervals provides
important information for diagnosing cardiovascular diseases or abnormalities in the conduction
system [Ele96; Lut19; Hou19; Ger08].
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2.2.2 Phonocardiography

Phonocardiography offers an alternative diagnostic tool to the ECG by focusing on the auditory
aspects of cardiac activity. In contrast to ECG, which measures the cardiac electrical conduction,
phonocardiography records the sounds and murmurs produced by the heart and transforms them
into a biomedical signal known as phonocardiogram (PCG) [Gio19]. PCG captures HSs using
a microphone attached to the precordium (the area of the chest above the heart) or a miniature
sensor inserted into the heart chambers via blood vessels. It records the sounds that the heart
makes during a cardiac cycle, including the closing of the heart valves and the associated sounds
(see Section 2.1.2) [Ism18]. However, the PCG signal is affected by a variety of artifacts, making
its interpretation a difficult task [Gio19]. The most challenging step is the segmentation of the
HSs, because of that in most cases require the simultaneous recording of a ECG as a reference
(Figure 2.3) [Mil22; Hui97].

Figure 2.3: Alignment of ECG and PCG signal. Simultaneous recording of ECG (upper panel)
and PCG (lower panel) aligned in time-domain, this alignment allows ECG to serve as a reference
for detecting HSs [Gio19].
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2.3 RADAR-based applications for contactless HS and HB de-
tection

RADAR technology provides an alternative approach for monitoring and analyzing cardiac activ-
ity. It allows for contactless measurements of HSs, HBs, and respiration, being specifically ad-
vantageous in situations where contact-based methods are impractical or uncomfortable. RADAR
systems typically use either frequency modulated continuous wave (FMCW) RADAR or continuous
wave (CW) RADAR technologies [Kra24].

FMCW RADAR continuously transmits a signal that sweeps through a range of frequencies over
time [Bjo98]. The instantaneous frequency f(t) of the transmitted signal can be described as:

f(t) = f0 +∆f · sin(2πfmt) (2.1)

where f0 is the carrier frequency, ∆f is the frequency deviation, and fm is the modulation fre-
quency [Wan15]. The transmitted signal is reflected by the subject’s chest and is received by
the RADAR system and contains information about the distance and motion of the chest. The
RADAR system calculates the beat frequency, by calculating the difference between the transmit-
ted and received signals [Bjo98; Tur20; Ani09]. This beat frequency fb is directly related to the
time delay ∆t and the velocity v of the chest motion:

fb = ∆f ·∆t (2.2)

v =
fb · λ
2

(2.3)

where λ is the wavelength of the transmitted signal [Wan15]. By continuously monitoring the
distance and velocity of the chest wall, the RADAR system captures the movements associated
with the HBs and respiration which is further processed to extract the HR and to detect any abnor-
malities in cardiac activity. However, the technology also faces challenges such as artifacts from
other body movements and therefore needs signal processing algorithms to accurately extract HSs
and HBs from the RADAR signal [Bjo98; Tur20; Ani09].

CW radar, in contrast, is a radar system that emits continuous high-frequency radio waves and
uses the Doppler effect to detect moving objects. CW radar can be utilized in a non-contact
sensing mode, when radio waves are directed towards a subject, and the reflected waves contain
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information about the motion of the chest due to the HB. The Doppler frequency shift (∆f ) can
be related to the motion of the chest, the dominant frequency of this shift then can be identified by
fast fourier transform (FFT) which in return can be converted into BPM resulting in the value for
the HR [Mal20]. Mathematically, the Doppler frequency shift (∆f ) can be expressed as follows:

∆f =
2fv cos(θ)

c
(2.4)

where ∆f refers to the Doppler frequency shift, f is representing the frequency of the emitted
wave, v represents the velocity of the target (motion of the chest), θ the angle between the radar
line of sight and the target’s velocity vector and c refers to the speed of light [Sko91].
Nevertheless, several challenges and potential difficulties are associated with using RADAR data
for HB detection. These include interference from external motion, such as breathing or body
movements, which can affect the accuracy of HB measurements [Keb20; Pra24]. Therefore, pre-
cise signal processing techniques to extract the HB signal from RADAR data are crucial and
require sophisticated algorithms to filter out noise and artifacts.

2.4 Signal processing techniques to improve HS and HB detec-
tion

Several methods have been developed to increase the accuracy of HB detection for multiple
biomedical measurement applications. Initial methods for processing and interpretation of HS
or HB signals from different sources have been summarized in works by Mansier et al. [Man96]
and Hedge et al. [Heg13]. However, HS or HB signals are non-stationary because their frequency
content and amplitude vary throughout cardiac cycles, which makes it challenging to analyze them
with the proposed traditional analyses methods. To address the challenges occurring for the anal-
ysis of non-stationary biomedical data, more recent processing techniques like Hilbert transform,
STFT or CWT have been utilized [Tha20; Ism18; Zin03; Deb21; Mei18; Cha15].

2.4.1 Hilbert transform

The Hilbert transform identifies HBs by detecting peaks in the envelope curve, distinguishing
systoles and diastoles based on the spacing between the peaks [Tha20]. This method is well-
suited for non-stationary signals, as it provides a clear representation of amplitude variations over
time.
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2.4.2 Short-time fourier transform
The STFT, on the other hand, provides a time-frequency representation of the signal through a
three-step process: segmentation (dividing the signal into shorter, overlapping segments), win-
dowing with functions like Hamming or Hanning (reducing artifacts arising through discontinu-
ous analysis of segment boundaries) [Pod14], and applying the FFT to decompose each segment
into a frequency-domain representation of each segment [Far16; Dje00]. The result is a spectro-
gram that visually represents how frequency components of the signal evolve over time, enabling
the identification of patterns, such as the frequency shifts associated with different disease-related
heart sounds or murmurs [Dje00].

2.4.3 Continuous wavelet transform
The CWT provides an alternative approach that is highly effective for analyzing non-stationary
signals [Zin03; Deb21; Mei18]. Unlike the STFT, that uses windows with a fixed size to analyze
the signal, the CWT utilizes a set of functions known as wavelets. At the core of this approach is
the mother wavelet. The CWT is defined as:

W (a, b) =

∫ ∞

−∞
f(t)

1√
a
ψ

(
t− b

a

)
dt

where:

• W (a, b) represents the wavelet coefficient at scale a and position b,

• f(t) is the original signal,

• ψ is the mother wavelet function,

• a is the scale parameter, and

• b is the translation or shift parameter.

The mother wavelet ψ(t) acts as a prototype to generate a set of wavelets through scaling (adjust-
ing size) and translation (shifting in time). This process allows the CWT to analyze the signal
at various resolutions, capturing both high- and low-frequency details [Zin03; Deb21; Mei18].
This property of the wavelets enables the CWT to provide both time and frequency resolution,
unlike the FFT, which only offers frequency information [Yog76]. During the CWT calculation,
the mother wavelets are convolved with the original signal at different points in time and across
various scales. This convolution process involves sliding the wavelet across the signal, starting at
the beginning of the input signal, moving along the time axis to the end and repeating the process
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Figure 2.4: CWT illustration. Upper panel depicts an example signal (left) and the two time-
dependent frequency components it contains (right). Lower panel shows the scaleogram contain-
ing signal strength vs. time and frequency after CWT. Graphic adapted from [Lee19].

with different scaled versions of the original mother wavelet to transforms the input signal from
a one-dimensional signal into a two-dimensional one, containing the time and the so-called scale
information [Zin03; Deb21; Mei18], that can be visualized in a scalogram (Figure 2.4), which
displays how the signal’s frequency content changes over time. The scales used in the CWT can
be converted into frequencies using the formula:

f =
fc
a

where:

• fc is the central frequency of the used mother wavelet, and

• a is the scale parameter of the CWT.

By using wavelets of different sizes, the CWT provides a scalogram, which shows how the signal’s
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frequency content changes over time. This flexibility makes the CWT particularly effective for
identifying complex cardiac signals.

2.5 Filters to reduce noise and artifacts in RADAR data
In RADAR signal processing, especially for applications such as non-contact HB measurement,
the presence of noise introduced by RLBMs, artifacts or technical interferences can drastically af-
fect the accuracy and reliability of the data. To overcome these issues, various filtering techniques
have been developed.

2.5.1 High-pass filter

A high-pass filter is designed to allow frequencies higher than a specified cutoff frequency while at-
tenuating lower frequencies. This procedure is particularly effective in eliminating low-frequency
noise from radar signals [Jol08; She05; Paa01]. The frequency response H(f) of an ideal high-
pass filter is expressed as:

H(f) =

1 if |f | > fc

0 if |f | ≤ fc

where fc denotes the cutoff frequency [Paa01].

2.5.2 Low-pass filter

Conversely, a low-pass filter allows frequencies lower than a specified cutoff frequency while
attenuating higher frequencies. This enables effective removal of high-frequency noise from radar
signals [Jol08; She05; Paa01]. The frequency response H(f) of an ideal low-pass filter is given
by:

H(f) =

1 if |f | ≤ fc

0 if |f | > fc

where fc represents the cutoff frequency [Paa01].

2.5.3 Band-pass filter

A band-pass filter permits frequencies within a specified range while attenuating frequencies out-
side this range. This filter is useful for isolating specific frequency components of interest in radar
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signals [Jol08; She05; Paa01], such as those corresponding to the HB. The frequency response
H(f) of an ideal band-pass filter is given by:

H(f) =

1 if fl < |f | < fh

0 if |f | ≤ fl or |f | ≥ fh

where fl and fh are the lower and upper cutoff frequencies, respectively [Paa01].

2.5.4 Butterworth filter

The Butterworth filter is characterized by a maximally flat frequency response in the passband,
making it a popular choice for applications requiring minimal signal distortion. It can be im-
plemented as a high-pass, low-pass, or band-pass filter [Jol08; Paa01]. The magnitude response
|H(f)| of a Butterworth filter is given by:

|H(f)| = 1√
1 +

(
f
fc

)2n

where: fc is the cutoff frequency and n is the order of the filter. A higher order results in a steeper
roll-off [Paa01].

2.6 AI-based applications to improve HS or HB detection

Signal processing techniques like Hilbert Transform, STFT, and CWT have made significant
strides in improving the accuracy of HB detection. When used in combination with filters —
such as butterworth or band-pass filters — these methods can effectively reduce noise and ar-
tifacts, while enhancing the signal clarity and improving detection performance. Despite these
advancements, these techniques still face limitations when dealing with non-stationary data and
complex noise patterns. Therefore, artificial intelligence (AI)-based applications have emerged
as a powerful alternative for HB detection under such challenging conditions [Kai20; Sha23]. AI
models based on LSTM units or the UNet architecture can help in adapting to differing signal
conditions and still detect HBs in the RADAR signal.
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2.6.1 Long short-term memory networks

LSTM networks, are a type of recurrent neural network (RNN), which are characterized by man-
aging long-term dependencies within time-series data, making it well-suited for analyzing HB
signals and being comprised of several LSTM cells.
The core component of an LSTM cell is the memory cell, which holds long-term information and
helps the network remember context over extended sequences. This memory cell is managed by
several gates that control the flow of information (Figure 2.5) [She20; Gre17]. The forget gate
decides what information from the previous memory cell state (blue xt−1 in Figure 2.5) should be
discarded. It uses a sigmoid function to output values between 0 and 1, where 0 means “forget”
and 1 means “keep”. The input gate determines what new information should be added to the
memory cell. It includes a sigmoid function (green σ in Figure 2.5) to decide the importance
of the new data and a tanh function (green tanh in Figure 2.5) to generate candidate values for
updating the cell state. The output gate controls what part of the memory cell state should be
used to form the hidden state (yellow ht in Figure 2.5). It uses a sigmoid function to filter the cell

Figure 2.5: LSTM cell architecture. Middle part of the graph depicts the different gates (forget,
input, output) of the LSTM cell with all relevant components (σ, tanh, ht, xt)[She20]. For a
detailed architectural and functional description see main text.
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state and a tanh function to scale it, ensuring that only the relevant information is passed forward.
The hidden state (yellow ht in Figure 2.5 is the primary output of the LSTM cell at each time step
which contains the information from the memory cell. This hidden state can be used for different
tasks, like detecting HSs, classifying HB patterns, or detecting anomalies [She20; Gre17].

2.6.2 UNet
In comparison to LSTM networks, the UNet architecture is a convolutional neural network (CNN)
designed primarily to segment images, like scalograms created by CWT, or biomedical images
[Du20]. It features a distinctive U-shaped structure, that consists of three parts: the contracting
path (encoder), the expanding path (decoder) and skip connections (Figure 2.6) [Ron15]. The

Figure 2.6: UNet architecture. Blue boxes are referring to a multi-channel feature map with the
number of features on top and x-y-size on the left. Boxes in white depict copied feature maps.
Different operations are represented by arrows [Ron15]. For detailed architectural and functional
description see main text.

contracting path progressively reduces the spatial dimensions of the input image while capturing
its essential features. This process involves a series of convolutional and pooling layers. Convo-
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lutional layers apply multiple filters to the input image to detect various features such as edges,
textures, and patterns. Each convolutional layer is followed by a rectified linear unit (ReLu) acti-
vation function, which introduces non-linearity into the model, enabling it to learn more complex
patterns (blue arrows in Figure 2.6). Max pooling layers perform downsampling by selecting the
maximum value from each region of the feature map (red arrows in Figure 2.6). This reduces
the spatial dimensions of the feature maps while retaining the most important information. Typ-
ically, a 2x2 max pooling operation is used, which halves the dimensions of the feature maps.
As the image passes through the encoder path, the number of feature maps (channels) increases,
allowing the model to capture more complex and abstract features. At the bottleneck, the im-
age is represented in its most abstract and compressed form. This stage captures the essence of
the input image, with the spatial dimensions drastically reduced but the depth (number of chan-
nels) increased. The bottleneck serves as the transition point between the encoder and decoder
paths [Ron15]. The expanding path reverses the process of the encoder to reconstruct the high-
resolution segmentation map by progressively increasing the spatial dimensions of the image
while adding finer details. This involves a series of up-convolutional (transposed convolution)
layers and skip connections. Up-convolution performs upsampling, increasing the spatial dimen-
sions of the feature maps (green arrows in Figure 2.6). Skip connections link corresponding layers
in the encoder and decoder paths, enabling the model to combine high-resolution features from
the encoder with the upsampled features in the decoder (grey lines illustrated in Figure 2.6). This
mechanism ensures that the detailed spatial information lost during downsampling is retained
and integrated into the reconstruction process. Each step in the decoder path combines the up-
sampled image with the corresponding feature maps from the encoder path, refining the details
and improving the accuracy of the segmentation. The feature map is processed by various con-
volutional layers, and after that, batch normalization and ReLu activation are applied. Through
that, more intricate patterns can be learned, and the precision of the segmentation map can be
improved. At the final level of the expanding path, a final convolution is applied (turquoise arrow
in Figure 2.6) to ensure that the number of channels matches the desired output channels. The
final output is a segmented image where each pixel is labeled as part of a specific object [Ron15].
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Related Work

In recent years, various methodologies have been explored to enhance the detection and analysis
of HBs.

3.1 Spectrum-based methods

Spectrum-based techniques for HB detection focus on analyzing the frequency components of
cardiac signals. These methods include techniques such as the STFT and CWT, which use time-
frequency representations to capture non-stationary HSs and HBs [Car03]. Chen et al. [Che09]
characterized time and frequency of HSs by using STFT and used this method for differentiation
of sample signals of coronary heart disease and non-coronary heart disease. However, the authors
did not mention the RADAR system used or the experimental setup for measuring the heart-related
vital signs. Mogi et al. [Mog17] used Doppler RADAR data to measure heart rate variability by
R-R-intervals (changes in the intervals between successive HBs) from participants sitting still.
They used a band-pass filter to reduce the noise caused by respiration and small body motion
together with STFT to calculate the spectrogram. The authors could verify that the root mean
square errors (RMSEs) of R-R intervals were improved for all subjects compared to conventional
algorithm using adaptive scale factor selection on learning [Mog15]. In a recent study from Shi
et al. [Shi22] an approach to extract the HB from CW RADAR data was utilized. The recording
was performed on five subjects sitting down and instructed to move as little as possible. After the
recording, the RADAR data was first filtered with a band-pass filter, so only frequencies in the
range of 0.05 to 15 Hz remained. After this preprocessing step, the data was transformed utilizing
STFT. The authors showed, with simulated as well as recorded data, that their approach could
successfully extract the HR from RADAR data with the advantage of being able to determine the
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HR in real time. Vikhe et al. [Vik09] compared the usage of STFT and CWT for heart sounds
and could show that STFT was unable to determine the time between the closure of the aortic
(A2) and pulmonary valve closure (P2) in S2 of the HSs, which play a crucial role in various
cardiac diseases. However, they could also show that CWT, on the other hand, was not only able
to distinguish between A2 and P2 but also to measure the delay in time. However, the authors
used PCG signals recorded using electronic stethoscopes as input data for their analyses instead of
RADAR data [Vik09]. Li et al. [Li17] used CWT on RADAR data of participants sitting in front
of the radar, breathing normally, and compared the performance with a Fourier transform-based
algorithm. With that approach, the authors could achieve an average error reduction from >26%
to 3.5%.

3.2 Deep learning-based techniques

With the advent of AI, deep learning methods have emerged as powerful tools for cardiac signal
analysis. Techniques such as LSTM networks and UNet architectures have been shown to effi-
ciently handle complex and noisy data. For example, Shi et al. [Shi19] focused on detecting the
S1 and S2 HSs using a dataset of 30 test persons and different LSTM architectures in order to
accurately extract the HSs from RADAR data. After different model variations, the authors were
able to train a model that could predict S1, Systole, S2 and diastole with an accuracy of 93.4%.
Han-Trong et al. [Han22] used CW RADAR and ECG signals of 30 participants breathing nor-
mally. Motion artifacts of the participants were extracted using a Butterworth filter in the range of
0.83 to 2.33 Hz and and the filtered data was fed into a LSTM model. With this setup, the authors
could achieve a correlation coefficient of 96.64% between the CW RADAR and the ECG signal.
Chowdhury et al. [Cho24] compared four different AI based methods: UNet, FPN, LinkNet und
MultiResLinkNet. The authors used a publicly available dataset from [Lu23], including RADAR
and ECG data from 30 subjects in five different lying down scenarios: resting, valsalva (forceful
exhalation against a closed airway), apnea (holding the breath), tilt-up, and tilt-down. The authors
could show that the MultiResLinkNet outperformed all other tested architectures (F1 score > 88%
in all measurement scenarios), even though all of them achieved correlation > 55% between the
ECG and RADAR signal.
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3.3 Noise-based approaches
Noise-based approaches involve advanced signal processing techniques to filter unwanted artifacts
and improve signal clarity. Yang et al. [Yan18], for example, suggested a tool for HB measure-
ments using a band-pass filter and CW Doppler RADAR sensor to develop a quarantine system
at airports for dengue fever. However, almost all data they used (>90%) needed to be excluded
due to RLBM or movements while breathing. Iwata et al. [Iwa21] on the other hand, combined
a matched filter and singular value decomposition to detect HR information from chest surface
vibrations with high accuracy. Chen et al. [Che21] presented a software system intending to ex-
tract vital signs even in the presence of motion artifacts. This system is based on deep contrastive
learning, so signals coming from body movements can be distinguished from heart-related vital
signs. To test their system, they compared the predictions from data recorded in varying amounts
of body movements: playing on the phone, typewriting, swaying the body, leg shaking, walking
on the treadmill, sitting down, and standing up. They could show that even in scenarios with
larger amounts of motion, the system could still predict the inter beat interval (IBI) with an er-
ror of under 5%. However, this system was only tested using data recorded with impulse-radio
ultra-wideband radar (IR-UWB) and FMCW RADAR. Tang et al. [Tan23] utilized a dataset con-
taining less noisy data and data with motion artifacts. In this case, the I and the Q components
of the RADAR data were preprocessed using STFT and afterwards separately fed into a dual au-
toencoder network. The output was then combined to a single spectrogram from which the HBs
were extracted. They could show that this type of network could improve the signal to noise ra-
tio (SNR) by combining less noisy data with data containing motion artifacts. But, the authors
did not provide an explanation how the waveform was recovered from the resulting spectrogram
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Methods

4.1 Data acquisition

In order to analyze which models and preprocessing steps can handle or tolerate motion artifacts,
two different data sets with varying levels of patient movements were used in the work presented
here. Both datasets, Radarcardia (EmpkinS D05; in the following referred to as D05 dataset)
and EKSpression (EmpkinS D02; hereafter called D02 dataset) were recorded as part of studies
conducted within the Collaborative Research Center “Empatho-Kinaesthetic Sensor Technology
– Sensor Techniques and Data Analysis Methods for Empatho-Kinaesthetic Modeling and Condi-
tion monitoring (EmpkinS)”.

4.1.1 D05 dataset

The first dataset was recorded in November 2023, containing 22 participants, evenly split with
50% females. This data was collected as part of a study conducted by [Oes24]. The ECG data
was recorded using the BIOPAC MP36 device (BIOPAC Systems Inc., Goleta, CA, USA) in com-
bination with the SS2LB module, as described by Oesten [Oes24] and Albrecht et al. [Alb24].
The SS2LB module captures a single-channel ECG following Lead II as described by Einthoven,
with three electrodes placed as illustrated in Figure 4.1A [Jin12]. The recordings were saved in
an unprocessed format without applying any filter and were subsequently exported as an .acq file.
For the RADAR measurements, radar sensors were placed approximately 10 to 15 cm above the
measurement location (Figures 4.1B and 4.2). The used measurement setup for the study is de-
picted in Figure 4.1B [Oes24]. The RADAR sensor measured at four anatomical locations: the
arteria carotis communis, and the proximal, medial, and distal aorta (Figure 4.2). Two measure-
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ment modalities were considered: (1) Normal - which indicates a normal breath and (2) Hold -
which refers to a participant holding their breath. The arteria carotis communis was only measured
during normal breathing, resulting in seven distinct measurement modalities for each participant.
The single RADAR sensor recorded the I and Q components at a frequency of 1953.125 Hz and
transmitted them to a synchronization node, which also transmits a synchronization signal to other
systems. All data were stored in a database, extracted using Python, and saved as .hdf5 files. In
all of the recordings the participants were lying down, resulting in a minimum amount of artifacts
caused by RLBM [Oes24].

Figure 4.1: Experimental setup for HB measurement. (A) Electrode placement for ECG ac-
cording to Einthoven. As represented with blue dots, electrodes are placed under the right clavicle,
on the lower left and the lower right lib creating an imaginary triangle around the heart. (B) Mea-
surement setup for RADAR and reference signal (ECG), graphic modified from [Oes24].

4.1.2 D02 dataset
The second dataset contained a total of 110 participants (balanced age, gender and equal parts
of participants with and without depression based on ICD-10 classification, interviews, visual
analogue scale (VAS) and questionnaires) with corresponding HB measurements [KeiND]. This
data was collected as part of a study conducted by Keinert et al. [KeiND]. For the purpose
of the work presented here, solely ECG and CW RADAR sensor recordings were used for all
subsequent analyses. The ECG signal was recorded using the BIOPAC MP160 device (BIOPAC
Systems Inc., Goleta, CA 93117, USA). The RADAR sensor recorded the I and Q components at
61 GHz. The RADAR signals were transmitted to a synchronization node, which also transmits
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Figure 4.2: Locations of HB measurements. Representation of the different anatomical loca-
tions used for HB measurement which were depicted in the thesis presented here. As shown, four
different locations along the aorta and arteria carotis communis were used.

a synchronization signal to other systems [KeiND]. Four measurement phases were considered:
emotion induction, coping, training and latency, resulting in an increased amount of movement
and therefore artifact caused by RLBM.

4.2 Data processing
To evaluate the effectiveness of different models and preprocessing methods in handling or tolerat-
ing motion artifacts, both datasets were analyzed with two separate approaches - LSTM and UNet,
each requiring a separate preprocessing pipeline. Both of these pipelines were implemented using
the tpcp Python package [Küd23]. If not explicitly mentioned, all parameters were used with the
default value.

4.2.1 ECG as ground truth

While the PCG is valuable for detecting HSs and mechanical functions, the timing and intensity
of HSs can be influenced by factors that do not affect the ECG, leading to potential discrep-
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ancies when used as a reference. For this reason, the ECG was chosen as the reference mea-
surement in this thesis. Data were collected from two sensors, ECG and CW RADAR, each
utilizing different internal clocks. For accurate comparison, both signals need to be perfectly
synchronized, which was not the case, necessitating synchronization. First, the actual sampling
rate of both signals was determined using FFT, since the actual sampling rate of the sensors
can deviate from the set sampling rate due to clock drift. Subsequently, both signals were re-
sampled to 1000 Hz to ensure equal temporal resolution. Cross-correlation was then computed
by cutting both signals to equal length and identifying the peak of the cross-correlation func-
tion to determine the positions with the best alignment. This information was used to calcu-
late the time offset, which was then applied to the RADAR signal for final alignment with the
ECG signal in the time domain. Following synchronization, the signals were divided into 5-
second segments with a 40% overlap. The ECG signal was then downsampled to 200 Hz.
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Figure 4.3: Label representation. Illustration of the cleaned ECG signal and the transformed
signal used as labels in the thesis presented here. Dark blue signal is referring to the cleaned ECG
signal, whereas the light blue line is representing the transformed signal.

Using the downsampled ECG data, the R-peak locations (of the QRS complex) were identified
using the ecg_process method of the Neurokit2 package in Python. At the R-peak locations, Gaus-
sian windows with a window length of 400 were placed and the rest of the signal remained 0 to
use the Gaussian window in following analyses as sole label for identifying the HB (Figure 4.3).
This method showed good results in previous research from Lu et al. [Lu23] and was chosen as
label for all trained models in this thesis. Using the cleaned ECG signal (instead of the Gaussian
windows) as labels was also tested, but this did not lead to a sufficient performance.
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4.2.2 LSTM approach
The preprocessing pipeline for the LSTM approach is illustrated in Figure 4.4 and involves six
steps. The first steps — synchronizing the measurements and segmenting the data — are con-

Figure 4.4: Preprocessing pipeline for the LSTM approach. Outlines the different preprocess-
ing steps performed for the LSTM approach.

ducted in the same way as described for the preprocessing of the ECG data (see Section 4.2.1).
Subsequent preprocessing steps include applying a Butterworth high-pass filter separately to the
I and Q component of the RADAR data in order to filter out frequencies outside of a possible HB
frequency. The filter used has a 5th-order and a cutoff frequency of 0.4 Hz. Following filtering,
both the I and Q components were downsampled to 200 Hz. The angle and power of the signals
are then calculated using Equations 4.1 and 4.2, respectively. A 4th-order Butterworth band-pass
filter is applied to the power signal, with a frequency range of 18 to 80 Hz.

θ = tan−1

(
Q

I

)
(4.1)

P =
1

T

∫ T

0

|x(t)|2 dt (4.2)

E(t) =
√
x(t)2 + (H{x(t)})2 (4.3)

The envelope of this filtered signal is computed using Equation 4.3, where the Hilbert Transform
is used as in Equation 4.4. These steps were used, because a similar preprocessing showed promis-
ing results in Albrecht et al. [Alb24]. After completing these preprocessing steps, the last step
involved standardizing and normalizing the five calculated components: I, Q, angle, power, and
envelope. The different results are standardized using the z-score (Equation 4.5) and then nor-
malized to a range of [0,1] using unity-based normalization (Equation 4.6), as this showed good
performance in Chowdhury et al. [Cho24].
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H{x(t)} =
1

π
P.V.

∫ ∞

−∞

x(τ)

t− τ
dτ (4.4)

where:

• x(t) is the original signal,

• τ represents the time delay or shift,

• t is the current time point,

• P.V. stands for the Cauchy principal value.

z =
x− µ

σ
(4.5)

where:

• x refers to the value of the data point,

• µ is the mean of the dataset,

• σ represents the standard deviation (SD) of the dataset.

x′ =
x− min(x)

max(x)− min(x)
(4.6)

A log transformation of the input values was also tested, but this resulted in worse performances
and was therefore not used for further experiments.
The resulting preprocessing output is exemplary illustrated in Figure 4.5. All segments were

saved as individual files which could not fit into the systems memory. To address this, segments
were loaded individually using TensorFlow datasets [Mar15], which can load segments as needed
and prefetch additional segments for upcoming training steps. As architecture for the LSTM
approach, a sequential model in Keras1 was applied (Figure A.1). The input shape of the first
layer has a shape of (5, 1000), where the five arrays correspond to the I and Q component as
well as the power, angle and the envelope of the RADAR signal, respectively. After the following
layers of this sequential model, a dense layer was chosen, ensuring that the output of the model

1https://keras.io/guides/sequential_model/

https://keras.io/guides/sequential_model/
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Figure 4.5: Representation of the preprocessing output for the LSTM approach. Line plots
depicting the different value changes over time for I, Q, angle, power, and envelope aligned in the
time domain. The X and Y axes refer to normalized values and time. White “X” represents the
corresponding mean performance metric.
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has the same dimensions as the label vectors. For this model the Binary Cross entropy function as
the loss function and the Adam algorithm as an optimizer, both from Keras2, were selected. This
architecture was tested with varying amounts of LSTM units (128, 256, 512) in the corresponding
layers. Additionally, different learning Rates (LRs) (1e−3 and 1e−4), which adjust the weights
during the training, were tested to find the best fitting one. Furthermore 40, 100 or 300 epochs
were used for training.

4.2.3 UNet approach

The data preprocessing for the UNet approach includes several subsequent steps (Figure 4.6).
Synchronizing and segmenting the RADAR data was performed the same way as described for

Synchronization Segmentation Bandpass Filter Downsampling CWT Normalization

Figure 4.6: Preprocessing pipeline for the UNet approach. Outlines all used steps for prepro-
cessing performed for the UNet approach.

the ECG data (see Section 4.2.1). Each segment is then filtered using a 4th-order Butterworth
band-pass filter with a frequency range of 18 to 80 Hz. This frequency range is selected based
on previous research [Wil18] that demonstrated its effectiveness in enhancing HB detection in
RADAR data. The filtered data are then downsampled to 200 Hz, resulting in 1000 data points
per segment. For the Continuous Wavelet Transform (CWT), various mother wavelets are tested
to identify the most suitable one for subsequent analysis using the PyWavelets package in Python
[Lee19]. As illustrated in Figure 4.7, four different mother wavelets are compared: Morlet, Shan-
non, Mexican Hat, and Gaussian wavelet, in the following referred to as morl, shan1-1, mexh,
and gaus1, respectively. Scales for the CWT are selected within a range of 1 to 257, as recom-
mended by the PyWavelets package documentation [Lee19], and are transformed into a geometric
progression, where each number is a constant multiple of the previous number [Har20]. Visual
inspection of the CWT results confirms that this range and transformation provided the best rep-
resentation of the HB signal, since the HB were clearly visible in the spectrogram of the CWT
signal (see Figure 5.3). Following standardization and normalization was conducted the same
way as described for the LSTM approach (see Section 4.2.2).

2https://keras.io/api/optimizers/adam/, https://keras.io/api/losses/probabilistic_losses/

https://keras.io/api/optimizers/adam/
https://keras.io/api/losses/probabilistic_losses/
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The computed segments were also saved individually and loaded during the training and test-
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Figure 4.7: CWT mother wavelets. Illustration of the different mother wavelets used for the
CWT in the work presented here. As shown, morl, gaus1, shan1-1 and mexh were included.
The light blue lines show the imaginary part of the mother wavelet function, and the dark blue
lines the real part.

ing process using a TensorFlow dataset. The standardized and normalized CWT results were
used as TensorFlow datasets to provide the input for a sequential model using Keras3 (Supple-
mentary Figure A.2). A UNet model is used as first layer with an input size of (256, 1000, 1).
For each up- and downsampling level filters with the sizes 16, 32 and 64 were used. The output
activation for this layer was set to a linear activation function. Initial weights are randomly set,
and the number of labels the model has to differentiate from is set to 1. Following the UNet layer,
a 2D-convolutional layer was applied with a kernel size of (256, 1) to reduce the dimensions from
(256, 1000, 1) to (1, 1000, 1). A flattening layer then adjusts the output to match the label vector
size (1000). The Binary Cross Entropy from Keras4 was also used as a loss function and the
Adam algorithm (from Keras5) as the optimizer. For the UNet models, also different LRs (1e−3

and 1e−4), were tested to find the best fitting one.

4.3 Evaluation

To evaluate the performance of the ML models, performance metrics for the continuous data ob-
tained by reconstructing the original time series from the segmented data was calculated.

3https://keras.io/guides/sequential_model/
4https://keras.io/api/losses/probabilistic_losses/
5https://keras.io/api/optimizers/adam/

https://keras.io/guides/sequential_model/
https://keras.io/api/losses/probabilistic_losses/
https://keras.io/api/optimizers/adam/
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As main performance metric the F1 score was used, which balances precision and recall. Pre-
cision (Equation 4.7) measures the proportion of true positives (TPs) among predicted positives
(TPs and false positives (FPs)), while recall (Equation 4.8) measures the proportion of TPs among
actual positives (TPs and false negatives (FNs)).

Precision =
TP

TP + FP
(4.7)

Recall =
TP

TP + FN
(4.8)

A prediction is classified as TP if it was detected within a tolerance window of 50ms or 100ms
around the peak of the Gaussian window of the label data (with 50% of the tolerance window in
either direction). The amount of detected TPs was subsequently divided by the sum of all detected
peaks in the predictions to calculate the Precision. For the Recall, the amount of TPs was divided
by the number of peaks in the label data. The F1 score (Equation 4.9) combines these metrics
into a single value, where 1 represents a perfect detection and 0 represents the worst.

F1 = 2 · Precision · Recall
Precision + Recall

(4.9)

Additionally, the Pearson correlation coefficient (Equation 4.10) was calculated to measure the
linear relationship between predicted and actual values as follows:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
∑n

i=1(Yi − Ȳ )2
(4.10)

where Xi and Yi are individual data points, and X̄ and Ȳ are the means of the two variables,
respectively. The Pearson coefficient ranges from -1 (perfect negative correlation) to 1 (perfect
positive correlation), with 0 indicating no correlation. For all approaches discussed in this thesis
the data was split into a training and testing dataset. 80% of the subjects were randomly assigned
to the training and validation dataset and the remaining 20% to the testing dataset, leading to the
distribution of segments illustrated in Table 4.1.

4.4 Computational settings
Python version 3.9 was used for all preprocessing procedures, whereas Python version 3.10 was
utilized for training and analyses. All models were trained using a single NVIDIA GeForce
RTX2080Ti or a single NVIDIA GeForce RTX3080, Tensorflow version 2.15.0, and version
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Table 4.1: Number of segments per dataset. Segments with an overlap of 40% and a length of
5 seconds for the D05 dataset, D02 dataset and in total.

D05 D02
Train and Validation Set 4,411 105,235
Test Set 1,385 24,610

Total 5,796 129,845

2.15.0 of Keras.





Chapter 5

Results and Discussion

In this chapter, the results of the different approaches used to detect the HB from the obtained data
are presented and discussed in detail. Each method’s performance is evaluated and compared to
each other.

5.1 Individual approaches

5.1.1 Long short-term memory approach

For this approach, the preprocessed data (see Section 4.2.3) was used to train a LSTM model for
both datasets separately and in an combined dataset, with the architecture illustrated in Supple-
mentary Figure A.1.

D05

To determine the best-performing LSTM model, various hyperparameters, including the LR, and
the number of epochs, as well as different amounts of LSTM units before and after the first dropout
layer were used.
After training the model with a LR of 1e−4 and 1e−3 for 40 epochs, it was examined that the lower
LR of 1e−4 performed better (Table 5.1). This not only becomes apparent when comparing the
two mean values of the F1 score with a tolerance window of 100ms, where the model with a LR
of 1e−4 achieves a 25% higher score than with a LR of 1e−3 but also since the model with a LR
of 1e−3 fails to detect any HBs for one modality. The same behavior was observed for the F1
score (50ms) and the correlation coefficient, as well as their corresponding SD. To explore the
full potential of this model, several other LSTM models with different numbers of training epochs
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Table 5.1: Performance metrics separated by LR. Differentiation of the LSTM model perfor-
mance trained with data from the D05 study with 40 Epochs and a LR of 1e−4 and 1e−3, respec-
tively.

LR of 1e−4 LR of 1e−3

F1 score (100ms) F1 score (50ms) Correlation F1 score (100ms) F1 score (50ms) Correlation
Mean 0.49 0.28 0.39 0.39 0.22 0.35

SD 0.23 0.17 0.09 0.26 0.19 0.10

and LSTM units were trained. However, increasing the number of LSTM units to 512 for both
layers did not improve the model’s overall performance. As shown in Table 5.2, the measured F1
score with a tolerance window of 100ms is at the maximum when 256 LSTM units were utilized
as opposed to 128, or 512 units. It could also be observed that the correlation stays stable when
128 or 256 LSTM units were used. Since using 256 LSTM units led to the best performance, two
separate LSTM models were trained with more training epochs. This increase in training epochs
improved the models’ performances (Figure 5.1). The largest improvement occurred between
40 and 100 epochs, with the mean F1 score (100ms) increasing by 32.51%. Between 40 and 300
epochs, the F1 score (100ms) improved by 36.77%, with a modest increase of 1.91% between 100
and 300 epochs. The correlation also rose with higher epochs, increasing by 8.34% from 100 to
300 epochs. Therefore, the best-performing model for this dataset uses 256 LSTM units, is trained
for 300 epochs, and has a LR of 1e−4. When comparing the different measurement locations of
the RADAR data (Figure 5.2), it becomes evident that the measurement location influences the
accuracy of detecting HBs. The model performed best at the Arteria carotis communis, with the
mean of every metric being the highest, and the interquartile range (IQR) among the lowest.
Furthermore, the performance was generally better for modalities at which the subject held their
breath, reducing motion artifacts (Figure 5.2). The performance metrics for different subjects
show that the subject impacts the model’s performance as well (Table 5.3). Subjects VP 01 and

Table 5.2: Performance metrics for different LSTM units. F1 score with tolerance window of
50 and 100ms and correlation coefficient between observed and predicted HRs for models with
differing number of LSTM units for the D05 dataset.

128 LSTM units 256 LSTM units 512 LSTM units
Mean F1 score (100ms) 0.40 0.49 0.34
Mean F1 score (50ms) 0.24 0.22 0.25
Correlation 0.40 0.40 0.31
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VP 15 performed worse across all three metrics compared to the other participants.
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Figure 5.1: Performance metrics for different epochs for the D05 dataset. F1 Score with
tolerance window of 50 and 100ms and correlation coefficient between observed and predicted
HBs for models with differing number of epochs.
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Figure 5.2: Location-dependent performance metrics for LSTM approach of the D05 dataset.
F1 score with tolerance window of 50 and 100ms and correlation coefficient between observed
and predicted HRs for differing measurement locations. hold = Participant is holding the breath
while measuring; normal = Participant is breathing normally.

Table 5.3: Subject-dependent performance metrics of the D05 dataset. F1 score with tolerance
window of 50 and 100ms and correlation coefficient between observed and predicted HRs for
differing subjects.

F1 score (100ms) F1 score (50ms) Correlation
Subject Mean SD Min Max Mean SD Min Max Mean SD Min Max
VP 01 0.57 0.18 0.29 0.74 0.31 0.12 0.14 0.43 0.42 0.14 0.18 0.56
VP 03 0.75 0.09 0.61 0.85 0.49 0.15 0.32 0.67 0.55 0.08 0.44 0.66
VP 11 0.74 0.12 0.59 0.95 0.44 0.20 0.12 0.75 0.55 0.10 0.44 0.74
VP 15 0.51 0.24 0.19 0.88 0.29 0.19 0.10 0.56 0.35 0.21 0.05 0.67
VP 18 0.71 0.20 0.38 0.93 0.41 0.22 0.10 0.63 0.53 0.15 0.27 0.69
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D02

Despite the extensive data available in the D02 dataset for training ML models, it is noisier than
the D05 dataset (see Section 4.1). A notable challenge was that using a learning rate of 1e−3

hindered the model from learning effectively, resulting in no detectable HBs. To get around that,
it was necessary to increase the number of training epochs to 300 to ensure sufficient learning.
Nonetheless, even with these adjustments, the predictions from the D02 dataset were worse across
all performance metrics compared to those from the D05 dataset, as shown in Table 5.4.

Table 5.4: Performance metrics for the LSTM model of the D02 dataset. Evaluation of pre-
diction with 100ms and 50ms tolerance windows, trained with 300 epochs, 256 units, and a LR
of 1e−4.

Mean SD Min Max
F1 score (100ms) 0.12 0.05 0.02 0.24
F1 score (50ms) 0.06 0.03 0.00 0.14
Correlation 0.02 0.04 -0.05 0.15

Combined data

To enhance predictions for datasets with higher noise levels, both the D05 and D02 datasets were
utilized together to test whether the model could improve its learning when exposed to data with
high and low SNR at the same time.
Multiple LSTM models were trained with different numbers of epochs and LRs with the combined
dataset. Since the models with 128 or 512 LSTM units performed poorly in the DO5 dataset, all
models discussed in this chapter feature 256 units in both LSTM layers. Across both LRs, the
LSTM models trained with only 40 epochs consistently underperformed, often failing to detect
any HBs. Increasing the number of epochs led to improved detection of the HB for the D02 part
of the combined dataset. Additionally, a higher LR positively impacted the performance metrics.
Consequently, the best results were achieved with a model trained for 100 epochs, 256 LSTM units
and a LR of 1e−3. When analyzing the performance of the best LSTM model for the combined
data, it could be shown, that the model exhibited the same results for all subjects of the D02 part
of the combined dataset. On the contrary, the measurement locations of the D05 dataset differed
in performance, where the modalities Arteria carotis communis (normal) and Aorta proximalis
(normal) performed worse than all other modalities. However, over all modalities, no model could
achieve a mean F1 score (100ms) higher than 0.1, indicating that this model architecture is not
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suited for the combined dataset.

5.1.2 UNet approach

To improve the aforementioned prediction of HBs further, a more extensive approach to enhance
robustness against respiratory movements and RLBM was used. For this approach, the two
datasets were preprocessed as discussed in Section 4.2.1 and 4.2.3. As depicted in Figure 5.3,
transforming the power of the RADAR data using the CWT aligns well with the measurements
taken by the ECG. A visual inspection of the CWT signal from the D05 dataset reveals that differ-
ent HSs can be detected within the transformed signal. Notably, the strongest signal corresponds
to the ST segment, corresponding to the time between the ventricular de- and repolarization. All
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Figure 5.3: Alignment of ECG Measurements with CWT Transformed Data. Upper Panel
depicts ECG signal. Lower Panel represents the Spectrogram obtained after CWT. Alignment
demonstrates the effectiveness of the CWT preprocessing method in accurately detecting HBs.
In this figure, only one measuring location for one subject is shown as an example in order to
illustrate the preprocessing results.
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in all, this indicates that the preprocessing method for the UNet approach is suitable for the accu-
rate detection of HBs. The preprocessed data was used to train a UNet model for both datasets
separately and in an combined approach, with the architecture illustrated in Supplementary Fig-
ure A.2. To determine the most suitable mother wavelet for detecting HBs, four different mother
wavelets were tested. For each wavelet type, two models were trained with LR of 1e−4 and 1e−3,
respectively, each model underwent 40 epochs of training.

D05

After training the UNet models, the performance metrics were calculated for each subject and
location. The comparison of the F1 scores with a tolerance window of 100ms and 50ms is illus-
trated in Figure 5.4 and shows that the median F1 scores (100ms) for all models are above 0.80
when using a LR of 1e−4. Furthermore, the mother wavelet morl performed better than the other
functions in terms of the mean F1 score (100ms) and exhibited the smallest IQR, indicating its
high potential for HB detection. Although the gaus1 wavelet also yielded good results with a
median F1 score (100ms) higher than that of morl, its mean F1 score (100ms) was lower, and
the IQR was larger, indicating more variation in that score. Additionally, the minimum F1 score
(100ms) for gaus1 was lower than that for morl. The shan1-1 wavelet showed promising results
with a distribution of F1 scores (100ms) similar to morl, albeit with more outliers. The mexh
wavelet had a smaller IQR than gaus1 but the lowest minimum score among all four functions.
In contrast to the LSTM model, an increased LR of 1e−3 using CWT generally led to improved

scores for this dataset, except for the models using the mother wavelet functions gaus1 and mexh,
where both the mean and median F1 scores (100ms and 50ms) dropped. However, the predictions
of the model using mexh for preprocessing became more stable, as evidenced by a reduced IQR
and an increased minimum F1 score (100ms and 50ms) due to the higher LR. The models trained
with data preprocessed using morl and shan1-1 wavelets benefited from the reduced LR for some
performance metrics. While the mean and median F1 scores (100ms) for the morl-based model
did not change, the minimum F1 score (100ms) increased by 24.57%.
When analyzing the more stringent F1 score with a tolerance window of 50ms, the mean scores
were lower across all types of mother wavelets used for preprocessing. However, an increased LR
positively influenced the performance of models trained with morl or shan1-1 wavelets. For these
models, both the median and mean F1 scores (50ms) were higher compared to those trained with
a LR of 1e−4. Additionally, these models exhibited an increased IQR, which resulted in fewer
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Figure 5.4: Performance comparison of models across different LRs and tolerance windows
for the D05 dataset. Left Panel: Boxplots of F1 scores with a 100ms tolerance window (top) and
50ms tolerance window (bottom) for models trained with a LR of 1e−4. Right Panel: Boxplots of
F1 scores with a 100ms tolerance window (top) and 50ms tolerance window (bottom) for models
trained with a LR of 1e−3. Each graph includes data for the four mother wavelets used, with white
“X” indicating the mean F1 score.

scores being considered outliers, as the lowest F1 score (50ms) also increased. Thus, the higher
LR of 1e−3 positively affected these two models.
Conversely, the increased LR had negative effects on the model trained with gaus1 as the mother

wavelet. Here, both the mean and median F1 scores (50ms) decreased, along with a reduced IQR,
indicating opposite behavior compared to morl and shan1-1. Lastly, the model using mexh-
based CWT was least affected by the change in LR, with only slight increases in the mean F1
score (50ms) and the corresponding IQR. When further analyzing the predictions of the different
models, it becomes apparent why the two mother wavelets, morl and shan1-1, performed better
overall than the other models. An example prediction from the different models with a LR of 1e−4

is illustrated in Figure 5.5. This figure shows the variations in HB detection among the models.
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Figure 5.5: Comparison of predictions and label vector across different mother wavelets of
the D05 dataset. Depiction of the predictions from the four different mother wavelets used. The
last plot in the series shows the ground truth label vector, providing a reference for evaluating the
performance of the predictions generated by each wavelet. Dotted lines depict the ground truth
R-peak at the corresponding time point, dark grey bars refer to the 50ms tolerance window, light
grey bars depict the 100ms tolerance window. For simplicity, only one measuring location for
one subject is shown.

The mexh-based model not only produces the lowest peaks but also spreads them out, making
it difficult for the peak detection algorithm to identify clear peaks. The remaining three model
types produce similar predictions, with shan1-1 generating peaks that best match the label vector.
However, this example also highlights a common issue across all four model types, where a FP
occurs at the beginning of the predictions. This specific type of FP does not impact the overall
model performance, as it occurs in the overlapping part of the predicted segment and is excluded
when calculating scores.

To compare the results of the D05 dataset between the LSTM approach and the UNet approach
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— only the best-performing model from each approach is selected for further comparison. For
the LSTM model, this is the one trained for 300 epochs with a LR of 1e−4 and 256 LSTM units.
For the UNet approach, the best-performing model was trained using the morl function as mother
wavelet with a LR of 1e−3, due to its high mean and low IQR in the F1 score (100ms).

When comparing the IHR predictions with the actual measured IHR, as illustrated in Figure
5.6, it is evident that both approaches (Unet and LSTM) yield good results. However, the UNet
model tends to underestimate the IHR, particularly in the range of 57 to 65 BPM. Conversely,
the LSTM approach struggles more with estimating IHR values in the range of 65 to 68 BPM.
Although Figure 5.6 suggests similar performance in terms of the mean IHR, the comparison of
F1 scores and correlation metrics reveals differences between the two models.

Performance metrics are detailed in Table 5.3 and Figure 5.2 for the LSTM approach, and in
Tables 5.5 and 5.6 for the UNet approach. The comparison reveals that the UNet model achieves
higher overall scores, indicating better performance. Unlike the LSTM model, which shows a
marked performance difference between measurements taken while subjects held their breath
versus breathed normally, the UNet model demonstrates no performance disparity under these
conditions. Additionally, despite a performance drop in the stricter F1 score metric, the UNet
model shows a smaller variation between subjects. This suggests that the UNet approach is more
robust against variations in measurement conditions and individual subjects.

Table 5.5: Location dependent performance metrics for the UNet approach of the D05
dataset. F1 score with tolerance window of 50 and 100ms and correlation coefficient between
observed and predicted HRs for differing measurement locations. hold = Participant is holding
the breath while measuring; normal = Participant is breathing normally.

F1 score (100ms) F1 score (50ms) Correlation

Mean SD Min Max Mean SD Min Max Mean SD Min Max
Aorta distalis (hold) 0.74 0.10 0.63 0.88 0.41 0.18 0.22 0.65 0.55 0.13 0.35 0.68

Aorta distalis (normal) 0.71 0.23 0.39 0.92 0.42 0.22 0.20 0.68 0.52 0.23 0.22 0.77
Aorta medialis (hold) 0.81 0.07 0.71 0.89 0.74 0.06 0.65 0.83 0.72 0.05 0.67 0.80

Aorta medialis (normal) 0.83 0.18 0.54 0.98 0.74 0.23 0.42 0.93 0.73 0.18 0.45 0.91
Aorta proximalis (hold) 0.84 0.04 0.80 0.88 0.76 0.11 0.61 0.85 0.74 0.06 0.67 0.80

Aorta proximalis (normal) 0.86 0.10 0.75 0.98 0.71 0.17 0.45 0.91 0.73 0.12 0.56 0.84
Arteria carotis communis (normal) 0.83 0.15 0.56 0.92 0.73 0.16 0.46 0.89 0.73 0.13 0.53 0.87
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Figure 5.6: Comparison of predicted IHR and corresponding residuals for both approaches
examined in the D05 dataset. Left panel represents scatterplot comparing predicted IHR and
corresponding residuals for the UNet approach, right panel for the LSTM approach.

Table 5.6: Subject-dependent performance metrics for the UNet approach of the D05 dataset.
F1 score with tolerance window of 50 and 100ms and correlation coefficient between observed
and predicted HBs for differing measurement locations. hold = Participant is holding the breath
while measuring; normal = Participant is breathing normally.

F1 score (100ms) F1 score (50ms) Correlation

Mean SD Min Max Mean SD Min Max Mean SD Min Max
VP 01 0.79 0.19 0.39 0.98 0.63 0.29 0.20 0.89 0.67 0.23 0.22 0.87
VP 03 0.81 0.13 0.54 0.94 0.71 0.17 0.42 0.91 0.70 0.13 0.45 0.83
VP 11 0.77 0.13 0.56 0.88 0.62 0.16 0.36 0.84 0.67 0.10 0.53 0.79
VP 15 0.77 0.14 0.54 0.97 0.61 0.27 0.21 0.94 0.62 0.21 0.33 0.91
VP 18 0.89 0.07 0.75 0.98 0.67 0.19 0.43 0.91 0.72 0.10 0.56 0.83
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Table 5.7: F1 score (100ms) statistics for the two best performing mother wavelets and all
phases of the D02 dataset. Descriptive parameters separated by mother wavelet and phase. ei =
emotion induction, lat = latency.

Mother Wavelet Phase Mean SD Min Max

mexh
coping 0.33 0.23 0.03 0.83
ei 0.31 0.18 0.06 0.78
lat 0.32 0.25 0.04 0.89
training 0.31 0.18 0.09 0.83

morl
coping 0.36 0.16 0.10 0.74
ei 0.35 0.13 0.13 0.77
lat 0.38 0.20 0.06 0.81
training 0.36 0.14 0.12 0.72

D02

Multiple models were trained on preprocessed data from the D02 dataset. Each model utilized
one of four mother wavelets and different LRs of either 1e−3 or 1e−4. It was quickly evident that
a LR of 1e−3 was too high for this dataset, as all models failed to predict any HBs regardless of
the chosen mother wavelet. When the LR was adjusted to 1e−4 for the D02 dataset, the model per-
formance improved, and the models were able to detect HBs (Figure 5.7). Due to the increased
noise in the D02 dataset, the metrics showed worse performance compared to the D05 dataset.
When analyzing the performance of different mother wavelets, morl and mexh demonstrated the
best performance in terms of the F1 score (100ms) and F1 score (50ms). This contrasts with the
D05 dataset, where the mexh yielded the poorest results for most metrics. Specifically, mexh
outperformed other wavelets in predicting the IHR in the D02 dataset, highlighting the impact of
the selected mother wavelet on model predictions and performance. All four models exhibited
several outliers in metrics such as the F1 score (100ms), F1 score (50ms), and correlation. How-
ever, these outliers were towards increased performance, differing from the behavior observed in
the D05 models. To further investigate the source of these outliers, predictions were analyzed by
location and phase. Table 5.7 shows the performance differences across the four phases used in
this dataset, revealing that, for the two best performing models, phase differences were smaller
than those between the used mother wavelets for the two best-performing models. This suggests
that the wavelet function influences performance more than the phase. Moreover, the influence of
the subject on performance was found to be greater than that of the phase, as illustrated in Figure
5.8. These large differences between subjects could be attributed to the measurement settings or
the participants themselves, as some may move less or have more easily detectable HBs.
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Figure 5.7: Performance metrics for the D02 dataset with LR 1e−4. Boxplots depicting the
of F1 scores with a 100ms tolerance window (top left) and 50ms tolerance window (top right) as
well as the correlation coefficient and absolute error for IHR. White “X” indicates the mean for
the corresponding metric.

Combined data

Similar to the LSTM approach, the combined dataset was also used to train the UNet models.
Eight models were trained, each using one of four different mother wavelets and a LR of either
1e−4 or 1e−3. Results of these eight models indicated that a LR of 1e−4 consistently yielded better
performance metrics, so this chapter will focus on these.

Among the models, the one trained with the morl mother wavelet performed best overall. How-
ever, the performance was dependent on the origin of the test data. For data from the D05
dataset of the combined dataset, the morl model had the worst performance regarding the F1
score (100ms), with a mean of 0.56. In contrast, the gaus1 model, which performed best for this
dataset, achieved a mean F1 score (100ms) of 0.72. This pattern was similar for the F1 score
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Figure 5.8: Subject dependent performance metrics for the UNet approach of the D02
dataset. F1 score with tolerance window of 50 and 100ms, correlation coefficient and absolute
error between observed and predicted HBs for all subjects.

(50ms) and the absolute error of the IHR. For correlation, the gaus1 and mexh models outper-
formed the others, with mean correlations of 0.60 and 0.61 respectively, while other models scored
0.56. Figure 5.9 compares the best performing model trained solely on the D05 dataset with the
model trained on the combined dataset. This Figure illustrates that, for the F1 score (100ms) and
correlation, the model did not benefit from the increased dataset size. The only improvement was
seen in the F1 score (50ms), with the mean, median, and first quartile being higher, although the
maximum was lower. Figure 5.10 illustrates the distribution of performance metrics for the two
best-performing models: one trained with the combined dataset and one trained exclusively on
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Figure 5.9: Performance comparison of best-performing models for the D05 and combined
dataset. Boxplots depicting the F1 score for both tolerance windows (100ms and 50ms) as well
as correlation between predicted values and ground truth labels for the D05 and combined dataset.
Best performing model for D05: CWT with UNet, mother wavelet morl and LR of 1e−3. Best-
performing model combined data: CWT with UNet, morl as mother wavelet and LR of 1e−4.
White “X” represents the corresponding mean performance metric.

the D02 dataset. This figure shows that the model trained on the combined dataset performed
worse than the one trained solely on the D02 dataset. Since this overall approach did not yield
improvements, performance based on location and subject will not be discussed.

Table 5.8: Combined performance metrics for Correlation, F1 score (100ms), and F1 score
(50ms).

Metric Origin Mean SD Min Max

F1 score (100ms) D02 0.2847 0.1945 0.0346 0.9483
D05 0.5608 0.2634 0.0567 0.9412

F1 score (50ms) D02 0.1638 0.1547 0.0000 0.8534
D05 0.4216 0.2680 0.0253 0.8863

Correlation D02 0.1771 0.1912 -0.0476 0.8111
D05 0.6064 0.1610 0.2265 0.8497
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Best performing model for D02: CWT with UNet, mother wavelet morl and LR of 1e−4. Best-
performing model combined data: CWT with UNet, morl as mother wavelet and LR of 1e−4.
White “X” represents the corresponding mean performance metric.
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5.2 General discussion and Limitations

In the thesis presented here, the performance of processing data using either a LSTM model or
CWT in combination with a UNet approach was investigated. The datasets used were D02 and
D05, each exhibiting differing levels of noise and artifacts and a combined version of both.

The UNet model demonstrated better performance compared to the LSTM approach, especially
when using noisy data. While the LSTM model failed to detect HBs in most of the cases, the UNet
model was still able to detect the HBs, highlighting the worth of a more computational intensive
preprocessing and training. Even though the UNet model handled the detection of the HBs in the
presence of noisier data better than the LSTM models, it still showed poor performance (Figure
5.7).

When compared to existing literature, the UNet model presented here underperformed. Lu et
al. [Lu23] achieved an F1 score (with a tolerance window of 75ms) of 0.98 for HR detection,
using a bidirectional gated recurrent unit network on a similar dataset as the D05 dataset, where
the participants were lying down or in an tilt-up position. With the approach presented here, only
a mean F1 score of 0.80 (100ms) and 0.64 (50ms) could be achieved.

Chowdhury et al. [Cho24] compared different model architectures, including UNet, for the same
dataset as Lu et al. [Lu23]. In their approach, a MultiResLinkNet architecture performed bet-
ter than UNet, achieving an F1 score of 0.94. The MultiResLinkNet architecture has a similar
structure as the UNet architecture, as it contains an encoding and expanding path. However, it
replaces the convolutional blocks in the UNet with Multi-Residual Blocks, containing several
aligned CNN blocks that work in parallel. Each block processes the input, passes its output to
the next block, and to a concatenation block. The concatenation block combines the outputs from
all the CNN blocks and adds them with the output of a 1x1 CNN block to increase details and
information. Additionally, in the decoding path, MultiResLinkNet uses Residual Paths instead of
direct skip connections. These Residual Paths involve various CNN blocks that further process
the output, refining the reconstruction of the image. Even though Chowdhury et al. [Cho24]
proposed a better performance for the MultiResLinkNet model compared to the UNet model, the
authors did not mention the size of their tolerance window used, complicating the comparison to
the results presented here. Nevertheless, Chowdhury et al. [Cho24] achieved a lower F1 score for
the modality where subjects holding there breath. The opposite trend was observed for the LSTM
approach used for the D05 dataset presented here, exhibiting better performance if the subjects
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held their breath (Figure 5.2). On the contrary, the UNet approach shown here does not reveal
strong difference between the modalities of breathing normally vs. holding the breath (Table 5.5),
indicating an increased robustness against artifacts caused by breathing.

Tang et al. [Tan23] used a combined approach, using a less noisy dataset (data collected using a
digital stethoscope) with a more noisy RADAR dataset. The authors used a Dual-UNet architec-
ture, where both UNets used the spectrogram computed using STFT, but one processed the I and
the other one the Q component of the RADAR signal. The authors could show, that this setup led
to an overall increased performance and robustness against background noise. Comparing this
to the combined approach in the thesis presented here, the LSTM model did not profit from the
combined dataset, and the metrics still show a low performance. The UNet models in this thesis,
on the other hand, showed a contrary behavior to the one observed by Tang et al. [Tan23], as their
performance became worse when a combined dataset was used (Figures 5.9 5.10 and Table 5.8).

Chen et al. [Che21] used a different approach for the detection of HBs in the presence of RLBMs.
The authors utilized deep contrastive learning using FMCW RADAR data from different modal-
ities such as walking on a treadmill, leg shaking or exercising. With their approach, the authors
could achieve a consistent error < 4% for all modalities tested. In addition, Chen et al. [Che21]
also detected a differences in performance between subjects. A comparison to the results pre-
sented here might not be perfectly accurate due to differing RADAR data and models used. How-
ever, the UNet model used in the thesis here had several outliers throughout the different phases
with relative errors of the IHR of 10% in 50% of the predictions, suggesting that the UNet model
used on CW RADAR data here performed worse than the one used by Chen et al. [Che21]. In ad-
dition, also a variation in performance depending on the subject could be observed in both datasets
(Table 5.6 and Figure 5.8) presented here, comparable to the results of Chen et al. [Che21].

Taking all of the discussed results and comparisons into account, there are several limitations
that should be considered when interpreting the aforementioned findings. The scope of the thesis
presented here was to focus on analyzing CW RADAR data using a LSTM and a UNet based
architecture. Evaluating other models might have identified a better suitable architecture for the
datasets analyzed here. A more detailed hyperparameter tuning could also improve the overall
performance. Furthermore, only four mother wavelets have been tested in the thesis here. A more
expanded collection of mother wavelets might further increase the models’ performance, due to
the shown influence of the mother wavelet type. Lastly, the two datasets, D02 and D05, were col-
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lected under different experimental conditions and for different subjects. These setup differences
limit the comparability of the results between the two datasets and suggests a standardized data
acquisition protocol.





Chapter 6

Conclusion and outlook

In the scope of this thesis, two datasets with varying levels of noise and artifacts were processed
and analyzed in order to detect HBs from CW RADAR data. The best-performing approach for
the D02 dataset could be identified with CWT in combination with UNet, morl as mother wavelet,
and a LR of 1e−4 with a mean F1 score (100ms) of 0.36. In contrast, the D05 dataset performed
best under the following conditions: CWT in conjunction with UNet, morl as mother wavelet
and a LR of 1e−3 showing a mean F1 score (100ms) of 0.80. For the combined dataset, again
CWT together with UNet, morl as mother wavelet and a LR of 1e−4 was determined as the best-
performing approach with a mean F1 score (100ms) of 0.35. All in all, CWT together with UNet
and morl as mother wavelet always performed best, independent of the dataset used. Only the LR
seems to be dataset dependent, suggesting a lower learning rate is more suitable for noisy data.
Even though the highest performance across all combinations and datasets did not reach an F1
score >0.85 or a correlation of >0.7 between the prediction and the ground truth, these findings
provide insights into the performance of the described models for the analyzed datasets and high-
light areas for future projects in order to improve contactless HR detection and analyses methods.

Future perspectives concerning the used model would be beneficial. For example, architectures
like Dual-UNet or MultiResLinkNet would be a good alternative since they have already been re-
ported to outperform the UNet architecture used [Tan23; Cho24]. Finally, in order to improve the
comparability between noisy and non-noisy datasets, it might be helpful to collect CW RADAR
data from the same subjects for both conditions (with body movement and without). This might
also enhance the evaluation of a model’s noise reduction capability. In summary, further investi-
gation of HB detection using CW RADAR data and their analyses are needed in order to make it
a viable contactless alternative to the current ECG standard.
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Figure A.1: Model architecture used for the LSTM approach. Outlines complete architecture
used for the LSTM approach.
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Figure A.2: Model architecture used for the UNet approach. Outlines reduced architecture
used for the UNet approach.
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Figure A.3: Performance metrics for the LSTM model with a LR of 1e−3, 40 epochs and 256
LSTM units for the D05 dataset. Boxplots depicting the of F1 scores with a 100ms tolerance
window (top left) and 50ms tolerance window (top right) as well as the correlation coefficient and
absolute error for the IHR. White “X” depicts the mean of the corresponding metric.
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Figure A.4: Performance metrics for the LSTM model with a LR of 1e−3, 100 epochs and 256
LSTM units for the D05 dataset. Boxplots depicting the of F1 scores with a 100ms tolerance
window (top left) and 50ms tolerance window (top right) as well as the correlation coefficient and
absolute error for the IHR. White “X” depicts the mean of the corresponding metric.
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Figure A.5: Performance metrics for the LSTM model with a LR of 1e−4, 100 epochs and 256
LSTM units for the D05 dataset. Boxplots depicting the of F1 scores with a 100ms tolerance
window (top left) and 50ms tolerance window (top right) as well as the correlation coefficient and
absolute error for the IHR. White “X” depicts the mean of the corresponding metric.
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Figure A.6: Performance metrics for the LSTM model with a LR of 1e−4, 300 epochs and 256
LSTM units for the D05 dataset. Boxplots depicting the of F1 scores with a 100ms tolerance
window (top left) and 50ms tolerance window (top right) as well as the correlation coefficient and
absolute error for the IHR. White “X” depicts the mean of the corresponding metric.
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Figure A.7: Performance metrics for the LSTM model with a LR of 1e−3, 100 epochs and 256
LSTM units for the D02 dataset. Boxplots depicting the of F1 scores with a 100ms tolerance
window (top left) and 50ms tolerance window (top right) as well as the correlation coefficient and
absolute error for the IHR. White “X” depicts the mean of the corresponding metric.
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Figure A.8: Performance metrics for the LSTM model with a LR of 1e−4, 100 epochs and 256
LSTM units for the D02 dataset. Boxplots depicting the of F1 scores with a 100ms tolerance
window (top left) and 50ms tolerance window (top right) as well as the correlation coefficient and
absolute error for the IHR. White “X” depicts the mean of the corresponding metric.
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Figure A.9: Performance metrics for the LSTM model with a LR of 1e−4, 300 epochs and 256
LSTM units for the D02 dataset. Boxplots depicting the of F1 scores with a 100ms tolerance
window (top left) and 50ms tolerance window (top right) as well as the correlation coefficient and
absolute error for the IHR. White “X” depicts the mean of the corresponding metric.
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Figure A.10: Performance metrics for the LSTM model with a LR of 1e−3, 300 epochs and
256 LSTM units for the combined dataset. Boxplots depicting the of F1 scores with a 100ms
tolerance window (top left) and 50ms tolerance window (top right) as well as the correlation
coefficient and absolute error for the IHR. White “X” depicts the mean of the corresponding
metric.
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Figure A.11: Performance metrics for the LSTM model with a LR of 1e−4, 300 epochs and
256 LSTM units for the combined dataset. Boxplots depicting the of F1 scores with a 100ms
tolerance window (top left) and 50ms tolerance window (top right) as well as the correlation
coefficient and absolute error for the IHR. White “X” depicts the mean of the corresponding
metric.
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Figure A.12: Performance metrics for the UNet model with a LR of 1e−3 and all mother
wavelets tested for the D05 dataset. Boxplots depicting the of F1 scores with a 100ms tolerance
window (top left) and 50ms tolerance window (top right) as well as the correlation coefficient
and absolute error for the IHR. Each graph includes data for the four mother wavelets used, with
white “X” indicating the mean for the corresponding metric.
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Figure A.13: Performance metrics for the UNet model with a LR of 1e−4 and all mother
wavelets tested for the D05 dataset. Boxplots depicting the of F1 scores with a 100ms tolerance
window (top left) and 50ms tolerance window (top right) as well as the correlation coefficient
and absolute error for the IHR. Each graph includes data for the four mother wavelets used, with
white “X” indicating the mean for the corresponding metric.
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Figure A.14: Performance metrics for the UNet model with a LR of 1e−4 and all mother
wavelets tested for the D02 dataset. Boxplots depicting the of F1 scores with a 100ms tolerance
window (top left) and 50ms tolerance window (top right) as well as the correlation coefficient
and absolute error for the IHR. Each graph includes data for the four mother wavelets used, with
white “X” indicating the mean for the corresponding metric.
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Figure A.15: Performance metrics for the UNet model with a LR of 1e−4 and all mother
wavelets tested for the combined dataset. Boxplots depicting the of F1 scores with a 100ms
tolerance window (top left) and 50ms tolerance window (top right) as well as the correlation
coefficient and absolute error for the IHR. Each graph includes data for the four mother wavelets
used, with white “X” indicating the mean for the corresponding metric.
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Acronyms

AI artificial intelligence

ANN artificial neural network

BPM beats per minute

CNN convolutional neural network

CVD cardiovascular diseases

CW continuous wave

CWT continuous wavelet transform

ECG electrocardiogram

FFT fast fourier transform

FMCW frequency modulated continuous wave

FN false negative

FP false positive

HB heart beat

HR heart rate

HS heart sound
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I in-phase

IBI inter beat interval

IHR instantaneous heart rate

IQR interquartile range

IR-UWB impulse-radio ultra-wideband radar

LR learning Rate

LSTM long short-term memory

LSTM long short-term memory cells

ML machine learning

PCG phonocardiogram

Q quadrature

RADAR radio detection and ranging

ReLu rectified linear unit

RLBM random large body movements

RMSE root mean square error

RNN recurrent neural network

SD standard deviation

SNR signal to noise ratio

STFT short-time fourier transform

TP true positive
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