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Artificial intelligence (AI) has demonstrated its efficiency and universality in various domains. However,
the black-box nature of Deep Learning (DL) algorithms and foundation models (FM) restricts their
clinical applications despite having underlying statistical principles [1]. Enhancing its transparency
and explainability is a way to improve the confidence of both physicians and patients. It contributes
to ferreting out the dominant features in making the diagnosis. This property helps physicians retrace
clinical cases and judgments, as well as benefits patients in understanding what they are experiencing.
Following the need to explore how Al makes decisions and what it learns from the networks, explainable
Artificial Intelligence (XAI) is proposed to reveal the decision process, making explanations and
interpretations visible [2]. XAI calls for confidence, privacy, ethics, and faxrness [3], demonstrating
its compatibility with applicable medicine.

The majority of the papers for XAl in medical image diagnosis apply attribution-based explainability
methods that aim to determine the contribution of an input feature to the target neuron [1]. It can be
further separated into three categories based on various mechanisms {4]: backpropagation-based like
IxG [5], activation-based exemplified by techniques such as Grad-CAM |[6] and Grad-CAM++ [7], and
perturbation-based methods with occlusion [8] and RISE [9]. The backpropagation-based methods are
based on the gradients [10, 11, 12, 13, 14]. Activation-based methods determine the importance by
weighting activation maps {15, 16, 17, 18]. Perturbation-based methods assign importance by observing
the change in input with perturbing {19, 20]. This mechanical difference leads to different visual quality,
with IxG, Grad-CAM, ablation-CAM, and occlusion showing better readability [4].

Foundation models (FM) are a type of Al that are trained on large-scale datasets. With pre-trained
weights, they can be data and computation efficient when adapted to downstream tasks with a limited
number of task-specific datasets. In the context of medical data, those datasets refer to medical
images and corresponding reports, and vary between modalities [21] like MRI and CT. Multimodal
FMs like CLIP [22] therefore show superiority in processing medical data compared to vision FMs
and language FMs. However, CLIP is pre-trained using general-domain data that are available on the
Internet [22], showing a large domain gap between universal information and medical data that can be
hardly compensated by fine-tuning for downstream tasks. On the contrary, domain-specific FMs serve
as a solid foundation for biomedical tasks [23], and medical-CLIPs [24, 25, 26] are proposed to bridge
the gap with medical-domain pre-training, which leads to better performances compared to general
CLIP. Additionally, CLIPs are mostly used for classification, image text retrieval, and visual question
answering (VQA) tasks. Since applying CLIPs to visual and language tasks is difficult because of the
requirement of complex multimodal reasoning [27], fine-tuning that merges a cross-modal interaction
module should be taken into account.

This sets the scope for our work. We build upon the generally pre-trained CLIP [22] and domain-
specific pre-trained CLIPs (PMC-CLIP [24], CT-CLIP [25], BiomedCLIP [26]) and fine-tune them for
different downstream tasks with task-specific datasets. The application of these CLIPs enables the
comparison between multimodal foundation models using different pre-training schemes, leading to
further discussion of foundation models in the healthcare domain. To ulteriorly compare the difference
between these two types of CLIPs, we intend to adopt XAI for transparency, explainability, and
interpretability. As attribution-based explainability methods are most commonly used in medical
imaging, we consider introducing IxG [5], IntGrad {13], and occlusion [8] for difference visualization
since they showcase better interpretability [4]. ‘

The proposed work comprises the following key components:

e Prepare all the task-specific medical datasets for downstream tasks, e.g. VQA-RAD [28] and
SLAKE [29] for visual question answering (VQA) task; MedMNIST [30] for image classification
task; ROCO {31] and PMC-15M |[26] for image-text retrieval task.

e Start with classification tasks: fine-tune the CLIPs with the MedMNIST dataset, and evaluate
for classification tasks. Evaluation metrics: AUROC and accuracy.

¢ Regarding VQA tasks, we employ two MedVQA methods: QCR [32] and MEVF [33], fine-tune
the CLIPs with SLAKE and VQA-RAD datasets, and incorporate the fine-tuned CLIPs into
MedVQA methods. Evaluation metrics: accuracy.



o For Image-text retrieval tasks, fine-tune the CLIPs with ROCO and PMC-15M datasets, and
image-text retrieval tasks can reference from discriminability-captioning [27, 34]. Evaluation
metrics: recall@k (k=1, 5, 10).

e Bias studies: for each task, train monomodal models (chosen based on the visual encoder and
- text encoder in CLIPs) with corresponding task datasets, to identify the potential bias in the
tasks and datasets.

o After adapting the CLIPs to each task, applying explainability methods e.g. IxG, IntGrad,
occlusion.

Qualitative evaluation can be achieved by showing saliency maps.

¢ (Optional) Quantitative evaluation of the explainability methods with Quantus [35].

This comprehensive analysis will demonstrate the effectiveness of domain-specific foundation models
by applying explanations, facilitating a deeper understanding of model behavior in medical imaging.
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