Parkinson’s disease symptom detection and prediction

Project leader: ,
Start date: 1. May 2021

In cooperation with PHCT

Abstract

Parkinson's disease after Alzheimer's is the second most common neurodegenerative disease which mainly affects the patient's mobility and produces gait insecurity and impairment. As patients experience various, asymmetrical and heterogeneous gait characteristics, personalized medication should be at the center of attention in controlling motor complications in Parkinson's patients. potentially, inertial measurement units (IMUs) can be utilized for long-term observation of the disease progress and estimating gait parameters. This project is dedicated to detecting and possibly predicting the motor symptoms of Parkinson's disease such as Bradykinesia, Dyskinesia, and the freeze of gait. This also includes the improvement of the existing gait analysis algorithms to fit the parkinsonian gait more accurately, which is the basis of symptom detection.