Empathokinesthetic sensors for biofeedback in depressed patients (D02)
Acronym: SFB 1483 EmpkinS D02
Project leader: Matthias Berking, Björn Eskofier
Project members: Stephanie Böhme, Lena Marie Gmelch, Klara Capito, Robert Richer, Lydia Rupp, Misha Sadeghi, Bernhard Egger, Amirreza Asemanrafat, Marie Keinert
Start date: 1. July 2021
End date: 30. June 2025
Funding source: DFG / Sonderforschungsbereich (SFB)
Abstract
The aim of the D02 project is the establishment of empathokinesthetic sensor technology and methods of machine learning as a means for the automatic detection and modification of depression-associated facial expressions, posture, and movement. The aim is to clarify to what extent, with the help of kinesthetic-related modifications influence depressogenic information processing and/or depressive symptoms. First, we will record facial expressions, body posture, and movement relevant to depression with the help of currently available technologies (e.g., RGB and depth cameras, wired EMG, established emotion recognition software) and use them as input parameters for new machine learning models to automatically detect depression-associated affect expressions. Secondly, a fully automated biofeedback paradigm is to be implemented and validated using the project results available up to that point. More ways of real-time feedback of depression-relevant kinaesthesia are investigated. Thirdly, we will research possibilities of mobile use of the biofeedback approach developed up to then.
Publications
2024
- Keinert M., Schindler-Gmelch L., Rupp L., Sadeghi M., Capito K., Hager M., Rahimi F., Richer R., Egger B., Eskofier B., Berking M.:
Facing depression: evaluating the efficacy of the EmpkinS-EKSpression reappraisal training augmented with facial expressions – protocol of a randomized controlled trial
In: BMC Psychiatry 24 (2024), Article No.: 896
ISSN: 1471-244X
DOI: 10.1186/s12888-024-06361-3
URL: https://bmcpsychiatry.biomedcentral.com/articles/10.1186/s12888-024-06361-3
BibTeX: Download - Sadeghi M., Richer R., Egger B., Schindler-Gmelch L., Rupp L., Rahimi F., Berking M., Eskofier B.:
Harnessing multimodal approaches for depression detection using large language models and facial expressions
In: npj Mental Health Research 3 (2024), p. 66
ISSN: 2731-4251
DOI: 10.1038/s44184-024-00112-8
URL: https://www.nature.com/articles/s44184-024-00112-8
BibTeX: Download
2023
- Sadeghi M., Egger B., Agahi R., Richer R., Capito K., Rupp L., Gmelch LM., Berking M., Eskofier B.:
Exploring the Capabilities of a Language Model-Only Approach for Depression Detection in Text Data
IEEE EMBS International Conference on Biomedical and Health Informatics (BHI) 2023 (Pittsburgh, PA, USA, 15. October 2023 - 18. October 2023)
In: IEEE EMBS International Conference on Biomedical and Health Informatics (BHI) 2023
DOI: 10.1109/BHI58575.2023.10313367
URL: https://ieeexplore.ieee.org/document/10313367
BibTeX: Download
2022
- Gmelch LM., Böhme S., Capito K., Rupp L., Richer R., Sadeghi M., Eskofier B., Berking M.:
EmpkinS - Empathokinästhetische Sensorik für Biofeedback bei Depression
Deutscher Psychotherapiekongress (DPK) (Berlin, 7. June 2022 - 11. June 2022)
URL: https://deutscher-psychotherapie-kongress.de/wp-content/uploads/2022/06/web_Programm_DPK2022_SS_09062022_final.pdf
BibTeX: Download - Keinert M., Streit H., Böhme S., Rupp L., Schindler-Gmelch L., Capito K., Eskofier B., Schuller BW., Berking M.:
Eine emotionsbasierte Variante des Annäherungs-Vermeidungs-Modifikationstrainings als Maßnahme zur Reduktion erhöhten Stresserlebens: eine Pilotstudie
1. Deutscher Psychotherapiekongress (Berlin, 7. June 2022 - 11. June 2022)
BibTeX: Download