Green Belt ML@Operations

Project leader: ,
Project members: , , ,
Start date: 1. November 2017
End date: 31. October 2019
Funding source: Bundesministerium für Bildung und Forschung (BMBF)

Abstract

Die Digitalisierung birgt große Potenziale zur Steigerung der Ressourceneffizienz industrieller Produktionsprozesse. Durch Technologien im Kontext von Industrie 4.0 können produktionsnahe Daten kurzzyklisch erfasst und aggregiert werden. In Anbetracht der dadurch zunehmenden Datenkomplexität und des Datenvolumens stehen Mitarbeiter jedoch vor der Herausforderung, diese Daten zu analysieren und zu interpretieren sowie die Nachhaltigkeit der eingeleiteten Maßnahmen zu bewerten, wobei die kognitiven Fähigkeiten oft an ihre Grenzen stoßen.

Verfahren des Maschinellen Lernens (ML) können hier neue Formen der Arbeitsteilung zwischen Maschinen bzw. Software als Entscheidungsvorbereiter und Mitarbeitern als Problemlöser zu ermöglichen. In der industriellen Praxis werden ML-Verfahren meist situativ und von Experten entwickelt eingesetzt, so dass der Aufwand entsprechend hoch ist. Des Weiteren verfügen kleine und mittlere Unternehmen (kmU) häufig nur über wenig Ressourcen und Expertise, um diese Potenziale zu nutzen.

Ziel dieses Projektes ist es, ein Qualifizierungskonzept zu entwickeln und durchzuführen, um den Kenntnisstand bzgl. ML-Verfahren von Mitarbeitern in Produktions- und Qualitätsbereich sowie von Studierenden mit den genannten Schwerpunkten gezielt zu erweitern. Die Teilnehmer entscheiden sich dabei entweder für die Spezialisierungsrichtung "Produktion" oder "Qualität". Jede Spezialisierungsrichtung besteht aus vier praxisorientierten Anwendungsfällen, in denen die Teilnehmer geeignete ML-Verfahren kennenlernen und in konkreten individuellen Projekten mit ca. 10 Wochen Dauer anwenden. Die Anwendungsphase wird von der wissenschaftlichen Leitung des Projekts individuell gecoacht. Die Anwendungsfälle orientieren sich an bestehenden Geschäftsprozessen und Problemstellungen in der Industrie zum Qualitätsmanagement und zur Optimierung von Produktionsprozessen, wodurch ein einfacher Transfer und eine hohe Akzeptanz auf industrieller Seite sichergestellt werden soll.