Jonas Müller

Jonas Müller, M. Sc.

Department Artificial Intelligence in Biomedical Engineering (AIBE)
Lehrstuhl für Maschinelles Lernen und Datenanalytik

Room: Room 01.020
Carl-Thiersch-Straße 2b
91052 Erlangen

since 11/2023 PhD Candidate

Machine Learning and Data Analytics Lab,
Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

10/2023-11/2023 Internship 

Scaltel GmbH & Co. KG., Waltenhofen

Application of Artificial Intelligence in Network Security Systems

11/2020-06/2023 M.Sc. in Cognitive Science

University of Tübingen,
Masters’s Thesis: “Glacier Movement Prediction with Deep Learning Models and Satellite Data”

05/2022-02/2023 Artificial Intelligence Expert 

Bosch-Siemens Home Appliances GmbH, Munich

Topics: Consulting, Machine Learning Tool Development and Maintenance

02/2022-11/2022 Internship,

Human Machine Cognition Lab,

Cluster of Excellence “Machine Learning” University of Tübingen, 

Topics: Evolutionary Algorithms and Bayesian Reinforcement Learning
Lab Report: “Emerging Social Behavior in Evolutionary Reinforcement Learning Simulations”

02/2022-05/2022 Scientific Assistant

Leibniz Institut für Wissensmedien,
Eberhard-Karls Universität Tübingen

02/2021-05/2022 Scientific Assistant

Department of Social Cognition and Decision Making,
Eberhard-Karls Universität Tübingen

10/2017-06/2020 B.Sc. in Psychology 

Alpen-Adria-University (AAU),

Bachelor’s Thesis: “Adaptive Toolbox oder Adjustable Spanner? Eine empirische Testung der beiden Paradigmen der Entscheidungsforschung durch eine konzeptuelle Replikationsstudie (Söllner & Bröder, 2016) im Zusammenhang mit Strategieauswahl, Informationssuche und Zuversicht in Entscheidungen”

PreHapp
–  Development of Motion-tracking Module for Rehabilitation Application with Deep Learning and Compter Vision Approaches
EmpkinS

2024

Year Title
2023 Müller, J., Braun, R., Lensch, H. P. A., & Ludwig, N. (2023). Glacier Movement Prediction with Attention-based Recurrent Neural Networks and Satellite Data. NeurIPS 2023 Workshop on Tackling Climate Change with Machine Learning. https://www.climatechange.ai/papers/neurips2023/42

No awards found.

Year Name Title
2023 Lukas Böhm  Developing New Approaches For Measuring Invariances Between Models Using Model Metamers
(co-supervision)
(Master’s Thesis)