Julius Hannink
Dr.-Ing. Julius Hannink
Alumnus
Carl-Thiersch-Straße 2b
91052 Erlangen
Department Artificial Intelligence in Biomedical Engineering (AIBE)
Lehrstuhl für Maschinelles Lernen und Datenanalytik
Carl-Thiersch-Straße 2b
91052 Erlangen
- Phone number: +49 9131 85-27921
- Email: julius.hannink@fau.de
- Website: https://www.mad.tf.fau.de/person/julius-hannink/
2015 — 2018 | PhD candidate in the Machine Learning and Data Analytics Lab (formerly Digital Sports Group) at the Friedrich-Alexander-University Erlangen-Nüremberg, Germany |
2014 | Research consultant for Wolfram Research Inc.
M.Sc. degree in physics at the University of Göttingen, Germany |
2013 | Research internship at University Eye Clinic Maastricht and Eindhoven University of Technology, the Netherlands |
2011 — 2012 | International Student at University of Copenhagen, Denmark
Research Assistant in the medical image analysis group at DIKU |
2011 | B.Sc. degree in physics at the University of Göttingen, Germany |
2020
- Ivanović MD., Hannink J., Ring M., Baronio F., Vukčević V., Hadžievski L., Eskofier B.:
Predicting defibrillation success in out-of-hospital cardiac arrested patients: Moving beyond feature design
In: Artificial Intelligence in Medicine 110 (2020), Article No.: 101963
ISSN: 0933-3657
DOI: 10.1016/j.artmed.2020.101963
BibTeX: Download
2019
- Gladow T., Gaßner H., Ullrich M., Hannink J., Roth N., Marxreiter F., Küderle A., Kohl Z., Winkler J., Eskofier B., Klucken J.:
Sensor-based gait analysis distinguishes fallers from non-fallers in Parkinson's disease under clinical and real-life conditions
BibTeX: Download - Haji Ghassemi N., Hannink J., Roth N., Gaßner H., Marxreiter F., Klucken J., Eskofier B.:
Turning analysis during standardized test using on-shoe wearable sensors in parkinson’s disease
In: Sensors 19 (2019), Article No.: 3103
ISSN: 1424-8220
DOI: 10.3390/s19143103
BibTeX: Download - Nguyen A., Roth N., Haji Ghassemi N., Hannink J., Seel T., Klucken J., Gaßner H., Eskofier B.:
Correction to: Development and clinical validation of inertial sensor-based gait-clustering methods in Parkinson's disease (J Neuroeng Rehabil (2019) 16:77 DOI: 10.1186/s12984-019-0548-2)
In: Journal of neuroEngineering and rehabilitation 16 (2019), Article No.: 98
ISSN: 1743-0003
DOI: 10.1186/s12984-019-0567-z
BibTeX: Download - Nguyen A., Roth N., Haji Ghassemi N., Hannink J., Seel T., Klucken J., Gaßner H., Eskofier B.:
Development and clinical validation of inertial sensor-based gait-clustering methods in Parkinson's disease
In: Journal of neuroEngineering and rehabilitation 16 (2019)
ISSN: 1743-0003
DOI: 10.1186/s12984-019-0548-2
BibTeX: Download
2018
- Haji Ghassemi N., Hannink J., Martindale C., Gaßner H., Müller M., Klucken J., Eskofier B.:
Segmentation of Gait Sequences in Sensor-Based Movement Analysis: A Comparison of Methods in Parkinson's Disease.
In: Sensors 18 (2018)
ISSN: 1424-8220
DOI: 10.3390/s18010145
BibTeX: Download - Haji Ghassemi N., Hannink J., Martindale C., Gaßner H., Müller M., Klucken J., Eskofier B.:
Segmentation of Gait Sequences in Sensor-Based Movement Analysis: A Comparison of Methods in Parkinson’s Disease
In: Sensors (2018)
ISSN: 1424-8220
DOI: 10.3390/s18010145
URL: http://www.mdpi.com/1424-8220/18/1/145
BibTeX: Download - Hannink J., Kautz T., Pasluosta CF., Barth J., Schülein S., Gaßmann KG., Klucken J., Eskofier B.:
Mobile Stride Length Estimation with Deep Convolutional Neural Networks.
In: IEEE Journal of Biomedical and Health Informatics 22 (2018), p. 354 - 362
ISSN: 2168-2194
DOI: 10.1109/JBHI.2017.2679486
URL: https://www.mad.tf.fau.de/files/2017/06/Hannink-et-al.-2017-Mobile-Stride-Length-Estimation-with-Deep-Convolutional-Neural-Networks-1.pdf
BibTeX: Download - Kluge F., Hannink J., Pasluosta CF., Klucken J., Gaßner H., Gelse K., Eskofier B., Krinner S.:
Pre-operative sensor-based gait parameters predict functional outcome after total knee arthroplasty
In: Gait & Posture 66 (2018), p. 194-200
ISSN: 0966-6362
DOI: 10.1016/j.gaitpost.2018.08.026
URL: https://www.mad.tf.fau.de/files/2020/12/kluge_2018_gp_proof.pdf
BibTeX: Download - Martindale C., Roth N., Hannink J., Sprager S., Eskofier B.:
Smart Annotation Tool for Multi-sensor gait based daily activity data
In: 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops) 2018
DOI: 10.1109/PERCOMW.2018.8480193
URL: https://www.mad.tf.fau.de/files/2018/09/percom2018_martindale.pdf
BibTeX: Download - Pasluosta CF., Hannink J., Gaßner H., von Tscharner V., Winkler J., Klucken J., Eskofier B.:
Motor output complexity in Parkinson's disease during quiet standing and walking: Analysis of short-term correlations using the entropic half-life.
In: Human movement science 58 (2018), p. 185-194
ISSN: 1872-7646
DOI: 10.1016/j.humov.2018.02.005
BibTeX: Download - Rafael Orozco-Arroyave J., Vasquez Correa J., Francisco Vargas-Bonilla J., Arora R., Dehak N., Nidadavolu PS., Christensen H., Rudzicz F., Yancheva M., Chinaei H., Vann A., Vogler N., Bocklet T., Cernak M., Hannink J., Nöth E.:
NeuroSpeech: An open-source software for Parkinson's speech analysis
In: Digital Signal Processing 77 (2018), p. 207-221
ISSN: 1051-2004
DOI: 10.1016/j.dsp.2017.07.004
BibTeX: Download
2017
- Hannink J., Gaßner H., Winkler J., Eskofier B., Klucken J.:
Inertial sensor-based estimation of peak accelerations during heel-strike and loading as markers of impaired gait patterns in PD patients
10. Deutscher Kongress für Parkinson und andere Bewegungsstörungen (Baden-Baden, Germany, 4. May 2017 - 6. May 2017)
DOI: 10.1016/j.baga.2017.02.002
BibTeX: Download - Hannink J., Kautz T., Pasluosta CF., Gaßmann KG., Klucken J., Eskofier B.:
Sensor-based Gait Parameter Extraction with Deep Convolutional Neural Networks.
In: IEEE Journal of Biomedical and Health Informatics 21 (2017), p. 85--93
ISSN: 2168-2194
DOI: 10.1109/JBHI.2016.2636456
URL: https://www.mad.tf.fau.de/files/2017/06/Hannink-et-al.-2017-Sensor-Based-Gait-Parameter-Extraction-With-Deep-Convolutional-Neural-Networks.pdf
BibTeX: Download - Hannink J., Kluge F., Gaßner H., Klucken J., Eskofier B.:
Quantifying postural instability in Parkinsonian gait from inertial sensor data during standardised clinical gait tests
In: 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN), 2017, p. 129-132
DOI: 10.1109/BSN.2017.7936024
URL: http://ieeexplore.ieee.org/document/7936024/
BibTeX: Download - Hannink J., Ollenschläger M., Kluge F., Roth N., Klucken J., Eskofier B.:
Benchmarking Foot Trajectory Estimation Methods for Mobile Gait Analysis.
In: Sensors 17 (2017)
ISSN: 1424-8220
DOI: 10.3390/s17091940
BibTeX: Download - Kautz T., Groh B., Hannink J., Jensen U., Strubberg H., Eskofier B.:
Activity recognition in beach volleyball using a Deep Convolutional Neural Network
In: Data Mining and Knowledge Discovery 31 (2017), p. 1678–1705
ISSN: 1573-756X
DOI: 10.1007/s10618-017-0495-0
BibTeX: Download - Kluge F., Gaßner H., Hannink J., Pasluosta CF., Klucken J., Eskofier B.:
Towards Mobile Gait Analysis: Concurrent Validity and Test-Retest Reliability of an Inertial Measurement System for the Assessment of Spatio-Temporal Gait Parameters
In: Sensors 17 (2017), p. 1522
ISSN: 1424-8220
DOI: 10.3390/s17071522
BibTeX: Download - Pasluosta CF., Steib S., Klamroth S., Gaßner H., Goßler J., Hannink J., Von Tscharner V., Pfeifer K., Winkler J., Klucken J., Eskofier B.:
Acute Neuromuscular Adaptations in the Postural Control of Patients with Parkinson’s disease after Perturbed Walking
In: Frontiers in Aging Neuroscience 9 (2017), p. 316
ISSN: 1663-4365
DOI: 10.3389/fnagi.2017.00316
URL: https://www.frontiersin.org/articles/10.3389/fnagi.2017.00316/full
BibTeX: Download
2016
- Duits R., Janssen MHJ., Hannink J., Sanguinetti GR.:
Locally Adaptive Frames in the Roto-Translation Group and Their Applications in Medical Imaging
In: Journal of Mathematical Imaging and Vision (2016), p. 1-36
ISSN: 1573-7683
DOI: 10.1007/s10851-016-0641-0
BibTeX: Download - Pasluosta CF., Steib S., Klamroth S., Gaßner H., Hannink J., Von Tscharner V., Pfeifer K., Winkler J., Klucken J., Eskofier B.:
Motor Output Complexity in Parkinson's disease Patients during Acute Treadmill Intervention
International Symposium on the Neuromechanics of Human Movement (Heidelberg)
BibTeX: Download - Ter Haar Romeny BM., Bekkers EJ., Zhang J., Abbasi-Sureshjani S., Huang F., Duits R., Dashtbozorg B., Berendschot TTJM., Smit-Ockeloen I., Eppenhof KAJ., Feng J., Hannink J., Schouten J., Tong M., Wu H., van Triest HW., Zhu S., Chen D., He W., Xu L., Han P., Kang Y.:
Brain-inspired algorithms for retinal image analysis
In: Machine Vision and Applications (2016), p. 1-19
ISSN: 1432-1769
DOI: 10.1007/s00138-016-0771-9
BibTeX: Download
2014
- Hannink J., Duits R., Bekkers E.:
Crossing-preserving multi-scale vesselness
In: Lecture Notes in Computer Science, Cambridge, MA: , 2014, p. 603-610 (Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014)
BibTeX: Download - Hannink J., Duits R., Bekkers EJ.:
Crossing-preserving multi-scale vesselness
Medical Image Computing and Computer-Assisted Intervention MICCAI 2014 (Cambridge, MA, 14. September 2014 - 18. September 2014)
In: Lecture Notes in Computer Science 2014
DOI: 10.1007/978-3-319-10470-6_75
URL: https://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2014/Hannink14-CMV.pdf
BibTeX: Download