Matthias Zürl
Matthias Zürl, M. Sc.
10/2024 – 12/2024 |
Visiting Scholar at the Conservation Technology Lab San Diego Zoo Wildlife Alliance |
Since 07/2019 | Researcher at the Machine Learning and Data Analytics Lab Friedrich-Alexander-Universität Erlangen-Nürnberg |
07/2019 – 09/2024 | Head Coach of the Innovation Lab for Wearable and Ubiquitous Computing Friedrich-Alexander-Universität Erlangen-Nürnberg |
04/2016 – 12/2018 | Research assistant at the Chair of Applied Physics Friedrich-Alexander-Universität Erlangen-Nürnberg |
10/2016 – 01/2019 | Masters Degree in Physics Friedrich-Alexander-Universität Erlangen-Nürnberg Master Thesis: “Fabrication and Investigation of Homodyne Detectors for Terahertz Radiation“ |
10/2011 – 04/2017 | Study program for High school teaching in Math and Physics Friedrich-Alexander-Universität Erlangen-Nürnberg |
10/2011 – 10/2015 | Bachelors Degree in Math and Physics Friedrich-Alexander-Universität Erlangen-Nürnberg Bachelor Thesis: “Entwicklung und Aufbau eines Experiments für das physikalische Praktikum für Fortgeschrittene: Transporteigenschaften von Ladungsträgern in Halbleitern – Hall-Effekt” |
2024
Gaitmap – An Open Ecosystem for IMU-based Human Gait Analysis and Algorithm Benchmarking
In: IEEE Open Journal of Engineering in Medicine and Biology (2024), p. 1-10
ISSN: 2644-1276
DOI: 10.1109/OJEMB.2024.3356791
BibTeX: Download
, , , , , , , , , , , , , :
Automated long-term monitoring of stereotypical movement in polar bears under human care using machine learning
In: Ecological Informatics (2024), p. 102840
ISSN: 1574-9541
DOI: 10.1016/j.ecoinf.2024.102840
BibTeX: Download
, , , , , , , , , :
2023
PolarBearVidID: A Video-Based Re-Identification Benchmark Dataset for Polar Bears
In: Animals 13 (2023), p. 801
ISSN: 2076-2615
DOI: 10.3390/ani13050801
BibTeX: Download
, , , , , , , , :
2022
Automated Video-Based Analysis Framework for Behavior Monitoring of Individual Animals in Zoos Using Deep Learning—A Study on Polar Bears
In: Animals 12 (2022), p. 692
ISSN: 2076-2615
DOI: 10.3390/ani12060692
BibTeX: Download
, , , , , , , , , , , , , :
Courses
Innovation Lab for Wearable and Ubiquitous Computing
Supervised Projects:
Term | Title |
Summer Term 2024 | Optifox |
Winter Term 2022 / 23 | Insecrecy |
Summer Term 2022 | ChampTrack |
Winter Term 2021 / 22 | VitalSense |
Summer Term 2021 | Dungineers |
Winter Term 2020 / 21 | Argus |
Summer Term 2020 | Stress+ |
Winter Term 2019 / 20 | Smart City Greens |
- European Association for Aquatic Mammals, Studying Animal Behaviour With Artificial Intelligence – A Case Study on Polar Bears, Tenerife, 15.03.2024
- Mittsommernacht Tiergarten Nürnberg, Künstliche Intelligenz in der Zoo-Forschung, Nürnberg, 28.07.2023
- Tierpatentreffen Nürnberg, Eisbären und Künstliche Intelligenz, Nürnberg, 21.07.2023
- CVPR, CV4Animals, PolarBearVidID: A Video-Based Re-Identification Benchmark Dataset for Polar Bears, Vancouver, 18.06.2023
- European Association for Aquatic Mammals, Dolphin-Welfare Evaluation Tool (WET): Current Status and Future Digital Development, Valencia, 10.03.2023
- Master Digital Business Administration, An Introduction into Deep Learning, Erlangen, 21.01.2023
- KI-Days, Keynote on Artificial Intelligence, CodeCamp:N, Nürnberg, 20.10.2022
- Dolphin WET Conference, Invited Speaker on Computer Science in Biology, Nürnberg, 03.10.2022
- Tech|Day on Deep Learning, Workshop, Zollhof, Nürnberg, 17.05.2022
- PintOfScience Festival, Talk, Nürnberg, 09.05.2022
- Master Digital Business Administration, Lecture and Exercises in Machine Learning, Erlangen, 12.03.2022
- Tech|Day on Deep Learning, Workshop, together with Stefan Seegerer, Zollhof, Nürnberg, 01.12.2020
Material
In the context of several workshops on Deep Learning, which I have conducted together with my colleague Stefan Seegerer, we have developed a cheatsheet for Pytorch, which turned out to be pretty helpful:
Year | Type | Student | Titel |
2024 | Bachelor Thesis | Lena Wiedholz |
Towards Open-Set Re-Identification of Bats |
2024 | Master Thesis | Tobias Frieß |
Machine Learning-Based Investigation of Overall State of Health Using Toothbrushing Behavior |
2024 | Master Project | Richard Vogeler |
Identifying Species based on Camera Trap Data from Africa |
2024 | Master Project | Laura Henning |
Wing Print: Automated Bat Re-Identification Through Distinct Wing Membrane Patterns |
2024 | Master Project | Fabian Westphal |
Lynx Re-Identification in the Wild |
2024 | Master Project | Jan Boden |
Wolf Re-Identification from Camera Trap Images in the Wild |
2024 | Master Thesis | Jan Petermann | Video-based Re-Identification for Grizzly and Polar Bears |
2024 | Master Thesis | Vishaal Saravanan |
Calving Detection |
2023 | Bachelor Thesis | Lena Heinstein |
Ubiquitous Investigation of Overall State of Health Using a Smart Toothbrush in Palliative Care (v 2.0) |
2023 | Master Project | Parteek Parteek |
Pose Estimation for Polar Bears |
2023 | Master Project | Jie Yi Tan |
Re-Identification for Orcas |
2023 | Master Thesis | Sara Zarifi |
Lynx Re-Identification from Camera Trap Images in the Wild |
2023 | Master Project | Robert Schröter |
Gallery Size Investigation for Polar Bear Re-ID |
2023 | Master Thesis | Nils Steinlein |
Video-based Dataset for Animal Re-Identification |
2023 | Master Thesis | Jonas Süßkind |
Video-based Behavior Analysis of Polar Bears Under Human Care |
2023 | Master Thesis | Julian Deyerler |
Wing Print: Automated Bat Re-Identification Through Distinct Wing Membrane Patterns |
2022 | Master Thesis | Paul Maas |
Ubiquitous Investigation of Overall State of Health Using a Smart Toothbrush in Palliative Care |
2022 | Master Thesis | Jonas Beyer |
Unsupervised Polar Bear Re-Identification |
2022 | Master Thesis | Philip Stoll |
Long-Term Automated Behavior Monitoring of Captive Polar Bears |
2021 | Master Thesis | Richard Dirauf |
Video-based Re-Identification of captive Polar Bears |
2021 | Master Thesis | Wenyu Zhang |
Classification of localized defects on silicon carbide (SiC) wafers using domain adaptation techniques |
2020 | Bachelor Thesis | Daniel Seitz |
Unsupervised learning for the classification of process steps in spatial-temporal data |